• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

lightningnetwork / lnd / 12056196575

27 Nov 2024 06:23PM UTC coverage: 58.717% (-0.2%) from 58.921%
12056196575

Pull #9242

github

aakselrod
go.mod: update to latest btcwallet
Pull Request #9242: Reapply #8644

8 of 39 new or added lines in 3 files covered. (20.51%)

543 existing lines in 30 files now uncovered.

132924 of 226381 relevant lines covered (58.72%)

19504.16 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

89.01
/contractcourt/htlc_timeout_resolver.go
1
package contractcourt
2

3
import (
4
        "encoding/binary"
5
        "fmt"
6
        "io"
7
        "sync"
8

9
        "github.com/btcsuite/btcd/btcutil"
10
        "github.com/btcsuite/btcd/txscript"
11
        "github.com/btcsuite/btcd/wire"
12
        "github.com/davecgh/go-spew/spew"
13
        "github.com/lightningnetwork/lnd/chainntnfs"
14
        "github.com/lightningnetwork/lnd/channeldb"
15
        "github.com/lightningnetwork/lnd/fn"
16
        "github.com/lightningnetwork/lnd/input"
17
        "github.com/lightningnetwork/lnd/lntypes"
18
        "github.com/lightningnetwork/lnd/lnutils"
19
        "github.com/lightningnetwork/lnd/lnwallet"
20
        "github.com/lightningnetwork/lnd/lnwire"
21
        "github.com/lightningnetwork/lnd/sweep"
22
)
23

24
// htlcTimeoutResolver is a ContractResolver that's capable of resolving an
25
// outgoing HTLC. The HTLC may be on our commitment transaction, or on the
26
// commitment transaction of the remote party. An output on our commitment
27
// transaction is considered fully resolved once the second-level transaction
28
// has been confirmed (and reached a sufficient depth). An output on the
29
// commitment transaction of the remote party is resolved once we detect a
30
// spend of the direct HTLC output using the timeout clause.
31
type htlcTimeoutResolver struct {
32
        // htlcResolution contains all the information required to properly
33
        // resolve this outgoing HTLC.
34
        htlcResolution lnwallet.OutgoingHtlcResolution
35

36
        // outputIncubating returns true if we've sent the output to the output
37
        // incubator (utxo nursery).
38
        outputIncubating bool
39

40
        // resolved reflects if the contract has been fully resolved or not.
41
        resolved bool
42

43
        // broadcastHeight is the height that the original contract was
44
        // broadcast to the main-chain at. We'll use this value to bound any
45
        // historical queries to the chain for spends/confirmations.
46
        //
47
        // TODO(roasbeef): wrap above into definite resolution embedding?
48
        broadcastHeight uint32
49

50
        // htlc contains information on the htlc that we are resolving on-chain.
51
        htlc channeldb.HTLC
52

53
        // currentReport stores the current state of the resolver for reporting
54
        // over the rpc interface. This should only be reported in case we have
55
        // a non-nil SignDetails on the htlcResolution, otherwise the nursery
56
        // will produce reports.
57
        currentReport ContractReport
58

59
        // reportLock prevents concurrent access to the resolver report.
60
        reportLock sync.Mutex
61

62
        contractResolverKit
63

64
        htlcLeaseResolver
65

66
        // incomingHTLCExpiryHeight is the absolute block height at which the
67
        // incoming HTLC will expire. This is used as the deadline height as
68
        // the outgoing HTLC must be swept before its incoming HTLC expires.
69
        incomingHTLCExpiryHeight fn.Option[int32]
70
}
71

72
// newTimeoutResolver instantiates a new timeout htlc resolver.
73
func newTimeoutResolver(res lnwallet.OutgoingHtlcResolution,
74
        broadcastHeight uint32, htlc channeldb.HTLC,
75
        resCfg ResolverConfig) *htlcTimeoutResolver {
3✔
76

3✔
77
        h := &htlcTimeoutResolver{
3✔
78
                contractResolverKit: *newContractResolverKit(resCfg),
3✔
79
                htlcResolution:      res,
3✔
80
                broadcastHeight:     broadcastHeight,
3✔
81
                htlc:                htlc,
3✔
82
        }
3✔
83

3✔
84
        h.initReport()
3✔
85

3✔
86
        return h
3✔
87
}
3✔
88

89
// isTaproot returns true if the htlc output is a taproot output.
90
func (h *htlcTimeoutResolver) isTaproot() bool {
59✔
91
        return txscript.IsPayToTaproot(
59✔
92
                h.htlcResolution.SweepSignDesc.Output.PkScript,
59✔
93
        )
59✔
94
}
59✔
95

96
// ResolverKey returns an identifier which should be globally unique for this
97
// particular resolver within the chain the original contract resides within.
98
//
99
// NOTE: Part of the ContractResolver interface.
100
func (h *htlcTimeoutResolver) ResolverKey() []byte {
21✔
101
        // The primary key for this resolver will be the outpoint of the HTLC
21✔
102
        // on the commitment transaction itself. If this is our commitment,
21✔
103
        // then the output can be found within the signed timeout tx,
21✔
104
        // otherwise, it's just the ClaimOutpoint.
21✔
105
        var op wire.OutPoint
21✔
106
        if h.htlcResolution.SignedTimeoutTx != nil {
31✔
107
                op = h.htlcResolution.SignedTimeoutTx.TxIn[0].PreviousOutPoint
10✔
108
        } else {
23✔
109
                op = h.htlcResolution.ClaimOutpoint
13✔
110
        }
13✔
111

112
        key := newResolverID(op)
21✔
113
        return key[:]
21✔
114
}
115

116
const (
117
        // expectedRemoteWitnessSuccessSize is the expected size of the witness
118
        // on the remote commitment transaction for an outgoing HTLC that is
119
        // swept on-chain by them with pre-image.
120
        expectedRemoteWitnessSuccessSize = 5
121

122
        // expectedLocalWitnessSuccessSize is the expected size of the witness
123
        // on the local commitment transaction for an outgoing HTLC that is
124
        // swept on-chain by them with pre-image.
125
        expectedLocalWitnessSuccessSize = 3
126

127
        // remotePreimageIndex index within the witness on the remote
128
        // commitment transaction that will hold they pre-image if they go to
129
        // sweep it on chain.
130
        remotePreimageIndex = 3
131

132
        // localPreimageIndex is the index within the witness on the local
133
        // commitment transaction for an outgoing HTLC that will hold the
134
        // pre-image if the remote party sweeps it.
135
        localPreimageIndex = 1
136

137
        // remoteTaprootWitnessSuccessSize is the expected size of the witness
138
        // on the remote commitment for taproot channels. The spend path will
139
        // look like
140
        //   - <sender sig> <receiver sig> <preimage> <success_script>
141
        //     <control_block>
142
        remoteTaprootWitnessSuccessSize = 5
143

144
        // localTaprootWitnessSuccessSize is the expected size of the witness
145
        // on the local commitment for taproot channels. The spend path will
146
        // look like
147
        //  - <receiver sig> <preimage> <success_script> <control_block>
148
        localTaprootWitnessSuccessSize = 4
149

150
        // taprootRemotePreimageIndex is the index within the witness on the
151
        // taproot remote commitment spend that'll hold the pre-image if the
152
        // remote party sweeps it.
153
        taprootRemotePreimageIndex = 2
154
)
155

156
// claimCleanUp is a helper method that's called once the HTLC output is spent
157
// by the remote party. It'll extract the preimage, add it to the global cache,
158
// and finally send the appropriate clean up message.
159
func (h *htlcTimeoutResolver) claimCleanUp(
160
        commitSpend *chainntnfs.SpendDetail) (ContractResolver, error) {
10✔
161

10✔
162
        // Depending on if this is our commitment or not, then we'll be looking
10✔
163
        // for a different witness pattern.
10✔
164
        spenderIndex := commitSpend.SpenderInputIndex
10✔
165
        spendingInput := commitSpend.SpendingTx.TxIn[spenderIndex]
10✔
166

10✔
167
        log.Infof("%T(%v): extracting preimage! remote party spent "+
10✔
168
                "HTLC with tx=%v", h, h.htlcResolution.ClaimOutpoint,
10✔
169
                spew.Sdump(commitSpend.SpendingTx))
10✔
170

10✔
171
        // If this is the remote party's commitment, then we'll be looking for
10✔
172
        // them to spend using the second-level success transaction.
10✔
173
        var preimageBytes []byte
10✔
174
        switch {
10✔
175
        // For taproot channels, if the remote party has swept the HTLC, then
176
        // the witness stack will look like:
177
        //
178
        //   - <sender sig> <receiver sig> <preimage> <success_script>
179
        //     <control_block>
180
        case h.isTaproot() && h.htlcResolution.SignedTimeoutTx == nil:
2✔
181
                //nolint:lll
2✔
182
                preimageBytes = spendingInput.Witness[taprootRemotePreimageIndex]
2✔
183

184
        // The witness stack when the remote party sweeps the output on a
185
        // regular channel to them looks like:
186
        //
187
        //  - <0> <sender sig> <recvr sig> <preimage> <witness script>
188
        case !h.isTaproot() && h.htlcResolution.SignedTimeoutTx == nil:
5✔
189
                preimageBytes = spendingInput.Witness[remotePreimageIndex]
5✔
190

191
        // If this is a taproot channel, and there's only a single witness
192
        // element, then we're actually on the losing side of a breach
193
        // attempt...
194
        case h.isTaproot() && len(spendingInput.Witness) == 1:
2✔
195
                return nil, fmt.Errorf("breach attempt failed")
2✔
196

197
        // Otherwise, they'll be spending directly from our commitment output.
198
        // In which case the witness stack looks like:
199
        //
200
        //  - <sig> <preimage> <witness script>
201
        //
202
        // For taproot channels, this looks like:
203
        //  - <receiver sig> <preimage> <success_script> <control_block>
204
        //
205
        // So we can target the same index.
206
        default:
7✔
207
                preimageBytes = spendingInput.Witness[localPreimageIndex]
7✔
208
        }
209

210
        preimage, err := lntypes.MakePreimage(preimageBytes)
10✔
211
        if err != nil {
10✔
212
                return nil, fmt.Errorf("unable to create pre-image from "+
×
213
                        "witness: %v", err)
×
214
        }
×
215

216
        log.Infof("%T(%v): extracting preimage=%v from on-chain "+
10✔
217
                "spend!", h, h.htlcResolution.ClaimOutpoint, preimage)
10✔
218

10✔
219
        // With the preimage obtained, we can now add it to the global cache.
10✔
220
        if err := h.PreimageDB.AddPreimages(preimage); err != nil {
10✔
221
                log.Errorf("%T(%v): unable to add witness to cache",
×
222
                        h, h.htlcResolution.ClaimOutpoint)
×
223
        }
×
224

225
        var pre [32]byte
10✔
226
        copy(pre[:], preimage[:])
10✔
227

10✔
228
        // Finally, we'll send the clean up message, mark ourselves as
10✔
229
        // resolved, then exit.
10✔
230
        if err := h.DeliverResolutionMsg(ResolutionMsg{
10✔
231
                SourceChan: h.ShortChanID,
10✔
232
                HtlcIndex:  h.htlc.HtlcIndex,
10✔
233
                PreImage:   &pre,
10✔
234
        }); err != nil {
10✔
235
                return nil, err
×
236
        }
×
237
        h.resolved = true
10✔
238

10✔
239
        // Checkpoint our resolver with a report which reflects the preimage
10✔
240
        // claim by the remote party.
10✔
241
        amt := btcutil.Amount(h.htlcResolution.SweepSignDesc.Output.Value)
10✔
242
        report := &channeldb.ResolverReport{
10✔
243
                OutPoint:        h.htlcResolution.ClaimOutpoint,
10✔
244
                Amount:          amt,
10✔
245
                ResolverType:    channeldb.ResolverTypeOutgoingHtlc,
10✔
246
                ResolverOutcome: channeldb.ResolverOutcomeClaimed,
10✔
247
                SpendTxID:       commitSpend.SpenderTxHash,
10✔
248
        }
10✔
249

10✔
250
        return nil, h.Checkpoint(h, report)
10✔
251
}
252

253
// chainDetailsToWatch returns the output and script which we use to watch for
254
// spends from the direct HTLC output on the commitment transaction.
255
func (h *htlcTimeoutResolver) chainDetailsToWatch() (*wire.OutPoint, []byte, error) {
21✔
256
        // If there's no timeout transaction, it means we are spending from a
21✔
257
        // remote commit, then the claim output is the output directly on the
21✔
258
        // commitment transaction, so we'll just use that.
21✔
259
        if h.htlcResolution.SignedTimeoutTx == nil {
29✔
260
                outPointToWatch := h.htlcResolution.ClaimOutpoint
8✔
261
                scriptToWatch := h.htlcResolution.SweepSignDesc.Output.PkScript
8✔
262

8✔
263
                return &outPointToWatch, scriptToWatch, nil
8✔
264
        }
8✔
265

266
        // If SignedTimeoutTx is not nil, this is the local party's commitment,
267
        // and we'll need to grab watch the output that our timeout transaction
268
        // points to. We can directly grab the outpoint, then also extract the
269
        // witness script (the last element of the witness stack) to
270
        // re-construct the pkScript we need to watch.
271
        //
272
        //nolint:lll
273
        outPointToWatch := h.htlcResolution.SignedTimeoutTx.TxIn[0].PreviousOutPoint
15✔
274
        witness := h.htlcResolution.SignedTimeoutTx.TxIn[0].Witness
15✔
275

15✔
276
        var (
15✔
277
                scriptToWatch []byte
15✔
278
                err           error
15✔
279
        )
15✔
280
        switch {
15✔
281
        // For taproot channels, then final witness element is the control
282
        // block, and the one before it the witness script. We can use both of
283
        // these together to reconstruct the taproot output key, then map that
284
        // into a v1 witness program.
285
        case h.isTaproot():
2✔
286
                // First, we'll parse the control block into something we can
2✔
287
                // use.
2✔
288
                ctrlBlockBytes := witness[len(witness)-1]
2✔
289
                ctrlBlock, err := txscript.ParseControlBlock(ctrlBlockBytes)
2✔
290
                if err != nil {
2✔
291
                        return nil, nil, err
×
292
                }
×
293

294
                // With the control block, we'll grab the witness script, then
295
                // use that to derive the tapscript root.
296
                witnessScript := witness[len(witness)-2]
2✔
297
                tapscriptRoot := ctrlBlock.RootHash(witnessScript)
2✔
298

2✔
299
                // Once we have the root, then we can derive the output key
2✔
300
                // from the internal key, then turn that into a witness
2✔
301
                // program.
2✔
302
                outputKey := txscript.ComputeTaprootOutputKey(
2✔
303
                        ctrlBlock.InternalKey, tapscriptRoot,
2✔
304
                )
2✔
305
                scriptToWatch, err = txscript.PayToTaprootScript(outputKey)
2✔
306
                if err != nil {
2✔
307
                        return nil, nil, err
×
308
                }
×
309

310
        // For regular channels, the witness script is the last element on the
311
        // stack. We can then use this to re-derive the output that we're
312
        // watching on chain.
313
        default:
15✔
314
                scriptToWatch, err = input.WitnessScriptHash(
15✔
315
                        witness[len(witness)-1],
15✔
316
                )
15✔
317
        }
318
        if err != nil {
15✔
319
                return nil, nil, err
×
320
        }
×
321

322
        return &outPointToWatch, scriptToWatch, nil
15✔
323
}
324

325
// isPreimageSpend returns true if the passed spend on the specified commitment
326
// is a success spend that reveals the pre-image or not.
327
func isPreimageSpend(isTaproot bool, spend *chainntnfs.SpendDetail,
328
        localCommit bool) bool {
21✔
329

21✔
330
        // Based on the spending input index and transaction, obtain the
21✔
331
        // witness that tells us what type of spend this is.
21✔
332
        spenderIndex := spend.SpenderInputIndex
21✔
333
        spendingInput := spend.SpendingTx.TxIn[spenderIndex]
21✔
334
        spendingWitness := spendingInput.Witness
21✔
335

21✔
336
        switch {
21✔
337
        // If this is a taproot remote commitment, then we can detect the type
338
        // of spend via the leaf revealed in the control block and the witness
339
        // itself.
340
        //
341
        // The keyspend (revocation path) is just a single signature, while the
342
        // timeout and success paths are most distinct.
343
        //
344
        // The success path will look like:
345
        //
346
        //   - <sender sig> <receiver sig> <preimage> <success_script>
347
        //     <control_block>
348
        case isTaproot && !localCommit:
3✔
349
                return checkSizeAndIndex(
3✔
350
                        spendingWitness, remoteTaprootWitnessSuccessSize,
3✔
351
                        taprootRemotePreimageIndex,
3✔
352
                )
3✔
353

354
        // Otherwise, then if this is our local commitment transaction, then if
355
        // they're sweeping the transaction, it'll be directly from the output,
356
        // skipping the second level.
357
        //
358
        // In this case, then there're two main tapscript paths, with the
359
        // success case look like:
360
        //
361
        //  - <receiver sig> <preimage> <success_script> <control_block>
362
        case isTaproot && localCommit:
3✔
363
                return checkSizeAndIndex(
3✔
364
                        spendingWitness, localTaprootWitnessSuccessSize,
3✔
365
                        localPreimageIndex,
3✔
366
                )
3✔
367

368
        // If this is the non-taproot, remote commitment then the only possible
369
        // spends for outgoing HTLCs are:
370
        //
371
        //  RECVR: <0> <sender sig> <recvr sig> <preimage> (2nd level success spend)
372
        //  REVOK: <sig> <key>
373
        //  SENDR: <sig> 0
374
        //
375
        // In this case, if 5 witness elements are present (factoring the
376
        // witness script), and the 3rd element is the size of the pre-image,
377
        // then this is a remote spend. If not, then we swept it ourselves, or
378
        // revoked their output.
379
        case !isTaproot && !localCommit:
7✔
380
                return checkSizeAndIndex(
7✔
381
                        spendingWitness, expectedRemoteWitnessSuccessSize,
7✔
382
                        remotePreimageIndex,
7✔
383
                )
7✔
384

385
        // Otherwise, for our non-taproot commitment, the only possible spends
386
        // for an outgoing HTLC are:
387
        //
388
        //  SENDR: <0> <sendr sig>  <recvr sig> <0> (2nd level timeout)
389
        //  RECVR: <recvr sig>  <preimage>
390
        //  REVOK: <revoke sig> <revoke key>
391
        //
392
        // So the only success case has the pre-image as the 2nd (index 1)
393
        // element in the witness.
394
        case !isTaproot:
14✔
395
                fallthrough
14✔
396

397
        default:
14✔
398
                return checkSizeAndIndex(
14✔
399
                        spendingWitness, expectedLocalWitnessSuccessSize,
14✔
400
                        localPreimageIndex,
14✔
401
                )
14✔
402
        }
403
}
404

405
// checkSizeAndIndex checks that the witness is of the expected size and that
406
// the witness element at the specified index is of the expected size.
407
func checkSizeAndIndex(witness wire.TxWitness, size, index int) bool {
24✔
408
        if len(witness) != size {
35✔
409
                return false
11✔
410
        }
11✔
411

412
        return len(witness[index]) == lntypes.HashSize
15✔
413
}
414

415
// Resolve kicks off full resolution of an outgoing HTLC output. If it's our
416
// commitment, it isn't resolved until we see the second level HTLC txn
417
// confirmed. If it's the remote party's commitment, we don't resolve until we
418
// see a direct sweep via the timeout clause.
419
//
420
// NOTE: Part of the ContractResolver interface.
421
func (h *htlcTimeoutResolver) Resolve(
422
        immediate bool) (ContractResolver, error) {
23✔
423

23✔
424
        // If we're already resolved, then we can exit early.
23✔
425
        if h.resolved {
29✔
426
                return nil, nil
6✔
427
        }
6✔
428

429
        // Start by spending the HTLC output, either by broadcasting the
430
        // second-level timeout transaction, or directly if this is the remote
431
        // commitment.
432
        commitSpend, err := h.spendHtlcOutput(immediate)
17✔
433
        if err != nil {
19✔
434
                return nil, err
2✔
435
        }
2✔
436

437
        // If the spend reveals the pre-image, then we'll enter the clean up
438
        // workflow to pass the pre-image back to the incoming link, add it to
439
        // the witness cache, and exit.
440
        if isPreimageSpend(
17✔
441
                h.isTaproot(), commitSpend,
17✔
442
                h.htlcResolution.SignedTimeoutTx != nil,
17✔
443
        ) {
26✔
444

9✔
445
                log.Infof("%T(%v): HTLC has been swept with pre-image by "+
9✔
446
                        "remote party during timeout flow! Adding pre-image to "+
9✔
447
                        "witness cache", h, h.htlc.RHash[:],
9✔
448
                        h.htlcResolution.ClaimOutpoint)
9✔
449

9✔
450
                return h.claimCleanUp(commitSpend)
9✔
451
        }
9✔
452

453
        // At this point, the second-level transaction is sufficiently
454
        // confirmed, or a transaction directly spending the output is.
455
        // Therefore, we can now send back our clean up message, failing the
456
        // HTLC on the incoming link.
457
        //
458
        // NOTE: This can be called twice if the outgoing resolver restarts
459
        // before the second-stage timeout transaction is confirmed.
460
        log.Infof("%T(%v): resolving htlc with incoming fail msg, "+
10✔
461
                "fully confirmed", h, h.htlcResolution.ClaimOutpoint)
10✔
462

10✔
463
        failureMsg := &lnwire.FailPermanentChannelFailure{}
10✔
464
        err = h.DeliverResolutionMsg(ResolutionMsg{
10✔
465
                SourceChan: h.ShortChanID,
10✔
466
                HtlcIndex:  h.htlc.HtlcIndex,
10✔
467
                Failure:    failureMsg,
10✔
468
        })
10✔
469
        if err != nil {
10✔
UNCOV
470
                return nil, err
×
UNCOV
471
        }
×
472

473
        // Depending on whether this was a local or remote commit, we must
474
        // handle the spending transaction accordingly.
475
        return h.handleCommitSpend(commitSpend)
10✔
476
}
477

478
// sweepSecondLevelTx sends a second level timeout transaction to the sweeper.
479
// This transaction uses the SINLGE|ANYONECANPAY flag.
480
func (h *htlcTimeoutResolver) sweepSecondLevelTx(immediate bool) error {
4✔
481
        log.Infof("%T(%x): offering second-layer timeout tx to sweeper: %v",
4✔
482
                h, h.htlc.RHash[:],
4✔
483
                spew.Sdump(h.htlcResolution.SignedTimeoutTx))
4✔
484

4✔
485
        var inp input.Input
4✔
486
        if h.isTaproot() {
6✔
487
                inp = lnutils.Ptr(input.MakeHtlcSecondLevelTimeoutTaprootInput(
2✔
488
                        h.htlcResolution.SignedTimeoutTx,
2✔
489
                        h.htlcResolution.SignDetails,
2✔
490
                        h.broadcastHeight,
2✔
491
                        input.WithResolutionBlob(
2✔
492
                                h.htlcResolution.ResolutionBlob,
2✔
493
                        ),
2✔
494
                ))
2✔
495
        } else {
6✔
496
                inp = lnutils.Ptr(input.MakeHtlcSecondLevelTimeoutAnchorInput(
4✔
497
                        h.htlcResolution.SignedTimeoutTx,
4✔
498
                        h.htlcResolution.SignDetails,
4✔
499
                        h.broadcastHeight,
4✔
500
                ))
4✔
501
        }
4✔
502

503
        // Calculate the budget.
504
        //
505
        // TODO(yy): the budget is twice the output's value, which is needed as
506
        // we don't force sweep the output now. To prevent cascading force
507
        // closes, we use all its output value plus a wallet input as the
508
        // budget. This is a temporary solution until we can optionally cancel
509
        // the incoming HTLC, more details in,
510
        // - https://github.com/lightningnetwork/lnd/issues/7969
511
        budget := calculateBudget(
4✔
512
                btcutil.Amount(inp.SignDesc().Output.Value), 2, 0,
4✔
513
        )
4✔
514

4✔
515
        // For an outgoing HTLC, it must be swept before the RefundTimeout of
4✔
516
        // its incoming HTLC is reached.
4✔
517
        //
4✔
518
        // TODO(yy): we may end up mixing inputs with different time locks.
4✔
519
        // Suppose we have two outgoing HTLCs,
4✔
520
        // - HTLC1: nLocktime is 800000, CLTV delta is 80.
4✔
521
        // - HTLC2: nLocktime is 800001, CLTV delta is 79.
4✔
522
        // This means they would both have an incoming HTLC that expires at
4✔
523
        // 800080, hence they share the same deadline but different locktimes.
4✔
524
        // However, with current design, when we are at block 800000, HTLC1 is
4✔
525
        // offered to the sweeper. When block 800001 is reached, HTLC1's
4✔
526
        // sweeping process is already started, while HTLC2 is being offered to
4✔
527
        // the sweeper, so they won't be mixed. This can become an issue tho,
4✔
528
        // if we decide to sweep per X blocks. Or the contractcourt sees the
4✔
529
        // block first while the sweeper is only aware of the last block. To
4✔
530
        // properly fix it, we need `blockbeat` to make sure subsystems are in
4✔
531
        // sync.
4✔
532
        log.Infof("%T(%x): offering second-level HTLC timeout tx to sweeper "+
4✔
533
                "with deadline=%v, budget=%v", h, h.htlc.RHash[:],
4✔
534
                h.incomingHTLCExpiryHeight, budget)
4✔
535

4✔
536
        _, err := h.Sweeper.SweepInput(
4✔
537
                inp,
4✔
538
                sweep.Params{
4✔
539
                        Budget:         budget,
4✔
540
                        DeadlineHeight: h.incomingHTLCExpiryHeight,
4✔
541
                        Immediate:      immediate,
4✔
542
                },
4✔
543
        )
4✔
544
        if err != nil {
4✔
545
                return err
×
546
        }
×
547

548
        return err
4✔
549
}
550

551
// sendSecondLevelTxLegacy sends a second level timeout transaction to the utxo
552
// nursery. This transaction uses the legacy SIGHASH_ALL flag.
553
func (h *htlcTimeoutResolver) sendSecondLevelTxLegacy() error {
7✔
554
        log.Debugf("%T(%v): incubating htlc output", h,
7✔
555
                h.htlcResolution.ClaimOutpoint)
7✔
556

7✔
557
        err := h.IncubateOutputs(
7✔
558
                h.ChanPoint, fn.Some(h.htlcResolution),
7✔
559
                fn.None[lnwallet.IncomingHtlcResolution](),
7✔
560
                h.broadcastHeight, h.incomingHTLCExpiryHeight,
7✔
561
        )
7✔
562
        if err != nil {
7✔
563
                return err
×
564
        }
×
565

566
        h.outputIncubating = true
7✔
567

7✔
568
        return h.Checkpoint(h)
7✔
569
}
570

571
// sweepDirectHtlcOutput sends the direct spend of the HTLC output to the
572
// sweeper. This is used when the remote party goes on chain, and we're able to
573
// sweep an HTLC we offered after a timeout. Only the CLTV encumbered outputs
574
// are resolved via this path.
575
func (h *htlcTimeoutResolver) sweepDirectHtlcOutput(immediate bool) error {
6✔
576
        var htlcWitnessType input.StandardWitnessType
6✔
577
        if h.isTaproot() {
8✔
578
                htlcWitnessType = input.TaprootHtlcOfferedRemoteTimeout
2✔
579
        } else {
8✔
580
                htlcWitnessType = input.HtlcOfferedRemoteTimeout
6✔
581
        }
6✔
582

583
        sweepInput := input.NewCsvInputWithCltv(
6✔
584
                &h.htlcResolution.ClaimOutpoint, htlcWitnessType,
6✔
585
                &h.htlcResolution.SweepSignDesc, h.broadcastHeight,
6✔
586
                h.htlcResolution.CsvDelay, h.htlcResolution.Expiry,
6✔
587
                input.WithResolutionBlob(h.htlcResolution.ResolutionBlob),
6✔
588
        )
6✔
589

6✔
590
        // Calculate the budget.
6✔
591
        //
6✔
592
        // TODO(yy): the budget is twice the output's value, which is needed as
6✔
593
        // we don't force sweep the output now. To prevent cascading force
6✔
594
        // closes, we use all its output value plus a wallet input as the
6✔
595
        // budget. This is a temporary solution until we can optionally cancel
6✔
596
        // the incoming HTLC, more details in,
6✔
597
        // - https://github.com/lightningnetwork/lnd/issues/7969
6✔
598
        budget := calculateBudget(
6✔
599
                btcutil.Amount(sweepInput.SignDesc().Output.Value), 2, 0,
6✔
600
        )
6✔
601

6✔
602
        log.Infof("%T(%x): offering offered remote timeout HTLC output to "+
6✔
603
                "sweeper with deadline %v and budget=%v at height=%v",
6✔
604
                h, h.htlc.RHash[:], h.incomingHTLCExpiryHeight, budget,
6✔
605
                h.broadcastHeight)
6✔
606

6✔
607
        _, err := h.Sweeper.SweepInput(
6✔
608
                sweepInput,
6✔
609
                sweep.Params{
6✔
610
                        Budget: budget,
6✔
611

6✔
612
                        // This is an outgoing HTLC, so we want to make sure
6✔
613
                        // that we sweep it before the incoming HTLC expires.
6✔
614
                        DeadlineHeight: h.incomingHTLCExpiryHeight,
6✔
615
                        Immediate:      immediate,
6✔
616
                },
6✔
617
        )
6✔
618
        if err != nil {
6✔
619
                return err
×
620
        }
×
621

622
        return nil
6✔
623
}
624

625
// spendHtlcOutput handles the initial spend of an HTLC output via the timeout
626
// clause. If this is our local commitment, the second-level timeout TX will be
627
// used to spend the output into the next stage. If this is the remote
628
// commitment, the output will be swept directly without the timeout
629
// transaction.
630
func (h *htlcTimeoutResolver) spendHtlcOutput(
631
        immediate bool) (*chainntnfs.SpendDetail, error) {
17✔
632

17✔
633
        switch {
17✔
634
        // If we have non-nil SignDetails, this means that have a 2nd level
635
        // HTLC transaction that is signed using sighash SINGLE|ANYONECANPAY
636
        // (the case for anchor type channels). In this case we can re-sign it
637
        // and attach fees at will. We let the sweeper handle this job.
638
        case h.htlcResolution.SignDetails != nil && !h.outputIncubating:
4✔
639
                if err := h.sweepSecondLevelTx(immediate); err != nil {
4✔
640
                        log.Errorf("Sending timeout tx to sweeper: %v", err)
×
641

×
642
                        return nil, err
×
643
                }
×
644

645
        // If this is a remote commitment there's no second level timeout txn,
646
        // and we can just send this directly to the sweeper.
647
        case h.htlcResolution.SignedTimeoutTx == nil && !h.outputIncubating:
6✔
648
                if err := h.sweepDirectHtlcOutput(immediate); err != nil {
6✔
649
                        log.Errorf("Sending direct spend to sweeper: %v", err)
×
650

×
651
                        return nil, err
×
652
                }
×
653

654
        // If we have a SignedTimeoutTx but no SignDetails, this is a local
655
        // commitment for a non-anchor channel, so we'll send it to the utxo
656
        // nursery.
657
        case h.htlcResolution.SignDetails == nil && !h.outputIncubating:
7✔
658
                if err := h.sendSecondLevelTxLegacy(); err != nil {
7✔
659
                        log.Errorf("Sending timeout tx to nursery: %v", err)
×
660

×
661
                        return nil, err
×
662
                }
×
663
        }
664

665
        // Now that we've handed off the HTLC to the nursery or sweeper, we'll
666
        // watch for a spend of the output, and make our next move off of that.
667
        // Depending on if this is our commitment, or the remote party's
668
        // commitment, we'll be watching a different outpoint and script.
669
        return h.watchHtlcSpend()
17✔
670
}
671

672
// watchHtlcSpend watches for a spend of the HTLC output. For neutrino backend,
673
// it will check blocks for the confirmed spend. For btcd and bitcoind, it will
674
// check both the mempool and the blocks.
675
func (h *htlcTimeoutResolver) watchHtlcSpend() (*chainntnfs.SpendDetail,
676
        error) {
17✔
677

17✔
678
        // TODO(yy): outpointToWatch is always h.HtlcOutpoint(), can refactor
17✔
679
        // to remove the redundancy.
17✔
680
        outpointToWatch, scriptToWatch, err := h.chainDetailsToWatch()
17✔
681
        if err != nil {
17✔
682
                return nil, err
×
683
        }
×
684

685
        // If there's no mempool configured, which is the case for SPV node
686
        // such as neutrino, then we will watch for confirmed spend only.
687
        if h.Mempool == nil {
32✔
688
                return h.waitForConfirmedSpend(outpointToWatch, scriptToWatch)
15✔
689
        }
15✔
690

691
        // Watch for a spend of the HTLC output in both the mempool and blocks.
692
        return h.waitForMempoolOrBlockSpend(*outpointToWatch, scriptToWatch)
2✔
693
}
694

695
// waitForConfirmedSpend waits for the HTLC output to be spent and confirmed in
696
// a block, returns the spend details.
697
func (h *htlcTimeoutResolver) waitForConfirmedSpend(op *wire.OutPoint,
698
        pkScript []byte) (*chainntnfs.SpendDetail, error) {
15✔
699

15✔
700
        log.Infof("%T(%v): waiting for spent of HTLC output %v to be "+
15✔
701
                "fully confirmed", h, h.htlcResolution.ClaimOutpoint, op)
15✔
702

15✔
703
        // We'll block here until either we exit, or the HTLC output on the
15✔
704
        // commitment transaction has been spent.
15✔
705
        spend, err := waitForSpend(
15✔
706
                op, pkScript, h.broadcastHeight, h.Notifier, h.quit,
15✔
707
        )
15✔
708
        if err != nil {
15✔
UNCOV
709
                return nil, err
×
UNCOV
710
        }
×
711

712
        // Once confirmed, persist the state on disk.
713
        if err := h.checkPointSecondLevelTx(); err != nil {
15✔
714
                return nil, err
×
715
        }
×
716

717
        return spend, err
15✔
718
}
719

720
// checkPointSecondLevelTx persists the state of a second level HTLC tx to disk
721
// if it's published by the sweeper.
722
func (h *htlcTimeoutResolver) checkPointSecondLevelTx() error {
17✔
723
        // If this was the second level transaction published by the sweeper,
17✔
724
        // we can checkpoint the resolver now that it's confirmed.
17✔
725
        if h.htlcResolution.SignDetails != nil && !h.outputIncubating {
21✔
726
                h.outputIncubating = true
4✔
727
                if err := h.Checkpoint(h); err != nil {
4✔
728
                        log.Errorf("unable to Checkpoint: %v", err)
×
729
                        return err
×
730
                }
×
731
        }
732

733
        return nil
17✔
734
}
735

736
// handleCommitSpend handles the spend of the HTLC output on the commitment
737
// transaction. If this was our local commitment, the spend will be he
738
// confirmed second-level timeout transaction, and we'll sweep that into our
739
// wallet. If the was a remote commitment, the resolver will resolve
740
// immetiately.
741
func (h *htlcTimeoutResolver) handleCommitSpend(
742
        commitSpend *chainntnfs.SpendDetail) (ContractResolver, error) {
10✔
743

10✔
744
        var (
10✔
745
                // claimOutpoint will be the outpoint of the second level
10✔
746
                // transaction, or on the remote commitment directly. It will
10✔
747
                // start out as set in the resolution, but we'll update it if
10✔
748
                // the second-level goes through the sweeper and changes its
10✔
749
                // txid.
10✔
750
                claimOutpoint = h.htlcResolution.ClaimOutpoint
10✔
751

10✔
752
                // spendTxID will be the ultimate spend of the claimOutpoint.
10✔
753
                // We set it to the commit spend for now, as this is the
10✔
754
                // ultimate spend in case this is a remote commitment. If we go
10✔
755
                // through the second-level transaction, we'll update this
10✔
756
                // accordingly.
10✔
757
                spendTxID = commitSpend.SpenderTxHash
10✔
758

10✔
759
                reports []*channeldb.ResolverReport
10✔
760
        )
10✔
761

10✔
762
        switch {
10✔
763

764
        // If we swept an HTLC directly off the remote party's commitment
765
        // transaction, then we can exit here as there's no second level sweep
766
        // to do.
767
        case h.htlcResolution.SignedTimeoutTx == nil:
4✔
768
                break
4✔
769

770
        // If the sweeper is handling the second level transaction, wait for
771
        // the CSV and possible CLTV lock to expire, before sweeping the output
772
        // on the second-level.
773
        case h.htlcResolution.SignDetails != nil:
4✔
774
                waitHeight := h.deriveWaitHeight(
4✔
775
                        h.htlcResolution.CsvDelay, commitSpend,
4✔
776
                )
4✔
777

4✔
778
                h.reportLock.Lock()
4✔
779
                h.currentReport.Stage = 2
4✔
780
                h.currentReport.MaturityHeight = waitHeight
4✔
781
                h.reportLock.Unlock()
4✔
782

4✔
783
                if h.hasCLTV() {
6✔
784
                        log.Infof("%T(%x): waiting for CSV and CLTV lock to "+
2✔
785
                                "expire at height %v", h, h.htlc.RHash[:],
2✔
786
                                waitHeight)
2✔
787
                } else {
6✔
788
                        log.Infof("%T(%x): waiting for CSV lock to expire at "+
4✔
789
                                "height %v", h, h.htlc.RHash[:], waitHeight)
4✔
790
                }
4✔
791

792
                // Deduct one block so this input is offered to the sweeper one
793
                // block earlier since the sweeper will wait for one block to
794
                // trigger the sweeping.
795
                //
796
                // TODO(yy): this is done so the outputs can be aggregated
797
                // properly. Suppose CSV locks of five 2nd-level outputs all
798
                // expire at height 840000, there is a race in block digestion
799
                // between contractcourt and sweeper:
800
                // - G1: block 840000 received in contractcourt, it now offers
801
                //   the outputs to the sweeper.
802
                // - G2: block 840000 received in sweeper, it now starts to
803
                //   sweep the received outputs - there's no guarantee all
804
                //   fives have been received.
805
                // To solve this, we either offer the outputs earlier, or
806
                // implement `blockbeat`, and force contractcourt and sweeper
807
                // to consume each block sequentially.
808
                waitHeight--
4✔
809

4✔
810
                // TODO(yy): let sweeper handles the wait?
4✔
811
                err := waitForHeight(waitHeight, h.Notifier, h.quit)
4✔
812
                if err != nil {
6✔
813
                        return nil, err
2✔
814
                }
2✔
815

816
                // We'll use this input index to determine the second-level
817
                // output index on the transaction, as the signatures requires
818
                // the indexes to be the same. We don't look for the
819
                // second-level output script directly, as there might be more
820
                // than one HTLC output to the same pkScript.
821
                op := &wire.OutPoint{
4✔
822
                        Hash:  *commitSpend.SpenderTxHash,
4✔
823
                        Index: commitSpend.SpenderInputIndex,
4✔
824
                }
4✔
825

4✔
826
                var csvWitnessType input.StandardWitnessType
4✔
827
                if h.isTaproot() {
6✔
828
                        //nolint:lll
2✔
829
                        csvWitnessType = input.TaprootHtlcOfferedTimeoutSecondLevel
2✔
830
                } else {
6✔
831
                        csvWitnessType = input.HtlcOfferedTimeoutSecondLevel
4✔
832
                }
4✔
833

834
                // Let the sweeper sweep the second-level output now that the
835
                // CSV/CLTV locks have expired.
836
                inp := h.makeSweepInput(
4✔
837
                        op, csvWitnessType,
4✔
838
                        input.LeaseHtlcOfferedTimeoutSecondLevel,
4✔
839
                        &h.htlcResolution.SweepSignDesc,
4✔
840
                        h.htlcResolution.CsvDelay,
4✔
841
                        uint32(commitSpend.SpendingHeight), h.htlc.RHash,
4✔
842
                        h.htlcResolution.ResolutionBlob,
4✔
843
                )
4✔
844

4✔
845
                // Calculate the budget for this sweep.
4✔
846
                budget := calculateBudget(
4✔
847
                        btcutil.Amount(inp.SignDesc().Output.Value),
4✔
848
                        h.Budget.NoDeadlineHTLCRatio,
4✔
849
                        h.Budget.NoDeadlineHTLC,
4✔
850
                )
4✔
851

4✔
852
                log.Infof("%T(%x): offering second-level timeout tx output to "+
4✔
853
                        "sweeper with no deadline and budget=%v at height=%v",
4✔
854
                        h, h.htlc.RHash[:], budget, waitHeight)
4✔
855

4✔
856
                _, err = h.Sweeper.SweepInput(
4✔
857
                        inp,
4✔
858
                        sweep.Params{
4✔
859
                                Budget: budget,
4✔
860

4✔
861
                                // For second level success tx, there's no rush
4✔
862
                                // to get it confirmed, so we use a nil
4✔
863
                                // deadline.
4✔
864
                                DeadlineHeight: fn.None[int32](),
4✔
865
                        },
4✔
866
                )
4✔
867
                if err != nil {
4✔
868
                        return nil, err
×
869
                }
×
870

871
                // Update the claim outpoint to point to the second-level
872
                // transaction created by the sweeper.
873
                claimOutpoint = *op
4✔
874
                fallthrough
4✔
875

876
        // Finally, if this was an output on our commitment transaction, we'll
877
        // wait for the second-level HTLC output to be spent, and for that
878
        // transaction itself to confirm.
879
        case h.htlcResolution.SignedTimeoutTx != nil:
8✔
880
                log.Infof("%T(%v): waiting for nursery/sweeper to spend CSV "+
8✔
881
                        "delayed output", h, claimOutpoint)
8✔
882

8✔
883
                sweepTx, err := waitForSpend(
8✔
884
                        &claimOutpoint,
8✔
885
                        h.htlcResolution.SweepSignDesc.Output.PkScript,
8✔
886
                        h.broadcastHeight, h.Notifier, h.quit,
8✔
887
                )
8✔
888
                if err != nil {
10✔
889
                        return nil, err
2✔
890
                }
2✔
891

892
                // Update the spend txid to the hash of the sweep transaction.
893
                spendTxID = sweepTx.SpenderTxHash
8✔
894

8✔
895
                // Once our sweep of the timeout tx has confirmed, we add a
8✔
896
                // resolution for our timeoutTx tx first stage transaction.
8✔
897
                timeoutTx := commitSpend.SpendingTx
8✔
898
                index := commitSpend.SpenderInputIndex
8✔
899
                spendHash := commitSpend.SpenderTxHash
8✔
900

8✔
901
                reports = append(reports, &channeldb.ResolverReport{
8✔
902
                        OutPoint:        timeoutTx.TxIn[index].PreviousOutPoint,
8✔
903
                        Amount:          h.htlc.Amt.ToSatoshis(),
8✔
904
                        ResolverType:    channeldb.ResolverTypeOutgoingHtlc,
8✔
905
                        ResolverOutcome: channeldb.ResolverOutcomeFirstStage,
8✔
906
                        SpendTxID:       spendHash,
8✔
907
                })
8✔
908
        }
909

910
        // With the clean up message sent, we'll now mark the contract
911
        // resolved, update the recovered balance, record the timeout and the
912
        // sweep txid on disk, and wait.
913
        h.resolved = true
10✔
914
        h.reportLock.Lock()
10✔
915
        h.currentReport.RecoveredBalance = h.currentReport.LimboBalance
10✔
916
        h.currentReport.LimboBalance = 0
10✔
917
        h.reportLock.Unlock()
10✔
918

10✔
919
        amt := btcutil.Amount(h.htlcResolution.SweepSignDesc.Output.Value)
10✔
920
        reports = append(reports, &channeldb.ResolverReport{
10✔
921
                OutPoint:        claimOutpoint,
10✔
922
                Amount:          amt,
10✔
923
                ResolverType:    channeldb.ResolverTypeOutgoingHtlc,
10✔
924
                ResolverOutcome: channeldb.ResolverOutcomeTimeout,
10✔
925
                SpendTxID:       spendTxID,
10✔
926
        })
10✔
927

10✔
928
        return nil, h.Checkpoint(h, reports...)
10✔
929
}
930

931
// Stop signals the resolver to cancel any current resolution processes, and
932
// suspend.
933
//
934
// NOTE: Part of the ContractResolver interface.
935
func (h *htlcTimeoutResolver) Stop() {
3✔
936
        close(h.quit)
3✔
937
}
3✔
938

939
// IsResolved returns true if the stored state in the resolve is fully
940
// resolved. In this case the target output can be forgotten.
941
//
942
// NOTE: Part of the ContractResolver interface.
943
func (h *htlcTimeoutResolver) IsResolved() bool {
5✔
944
        return h.resolved
5✔
945
}
5✔
946

947
// report returns a report on the resolution state of the contract.
948
func (h *htlcTimeoutResolver) report() *ContractReport {
2✔
949
        // If we have a SignedTimeoutTx but no SignDetails, this is a local
2✔
950
        // commitment for a non-anchor channel, which was handled by the utxo
2✔
951
        // nursery.
2✔
952
        if h.htlcResolution.SignDetails == nil && h.
2✔
953
                htlcResolution.SignedTimeoutTx != nil {
4✔
954
                return nil
2✔
955
        }
2✔
956

957
        h.reportLock.Lock()
2✔
958
        defer h.reportLock.Unlock()
2✔
959
        cpy := h.currentReport
2✔
960
        return &cpy
2✔
961
}
962

963
func (h *htlcTimeoutResolver) initReport() {
20✔
964
        // We create the initial report. This will only be reported for
20✔
965
        // resolvers not handled by the nursery.
20✔
966
        finalAmt := h.htlc.Amt.ToSatoshis()
20✔
967
        if h.htlcResolution.SignedTimeoutTx != nil {
34✔
968
                finalAmt = btcutil.Amount(
14✔
969
                        h.htlcResolution.SignedTimeoutTx.TxOut[0].Value,
14✔
970
                )
14✔
971
        }
14✔
972

973
        // If there's no timeout transaction, then we're already effectively in
974
        // level two.
975
        stage := uint32(1)
20✔
976
        if h.htlcResolution.SignedTimeoutTx == nil {
28✔
977
                stage = 2
8✔
978
        }
8✔
979

980
        h.currentReport = ContractReport{
20✔
981
                Outpoint:       h.htlcResolution.ClaimOutpoint,
20✔
982
                Type:           ReportOutputOutgoingHtlc,
20✔
983
                Amount:         finalAmt,
20✔
984
                MaturityHeight: h.htlcResolution.Expiry,
20✔
985
                LimboBalance:   finalAmt,
20✔
986
                Stage:          stage,
20✔
987
        }
20✔
988
}
989

990
// Encode writes an encoded version of the ContractResolver into the passed
991
// Writer.
992
//
993
// NOTE: Part of the ContractResolver interface.
994
func (h *htlcTimeoutResolver) Encode(w io.Writer) error {
25✔
995
        // First, we'll write out the relevant fields of the
25✔
996
        // OutgoingHtlcResolution to the writer.
25✔
997
        if err := encodeOutgoingResolution(w, &h.htlcResolution); err != nil {
25✔
998
                return err
×
999
        }
×
1000

1001
        // With that portion written, we can now write out the fields specific
1002
        // to the resolver itself.
1003
        if err := binary.Write(w, endian, h.outputIncubating); err != nil {
25✔
1004
                return err
×
1005
        }
×
1006
        if err := binary.Write(w, endian, h.resolved); err != nil {
25✔
1007
                return err
×
1008
        }
×
1009
        if err := binary.Write(w, endian, h.broadcastHeight); err != nil {
25✔
1010
                return err
×
1011
        }
×
1012

1013
        if err := binary.Write(w, endian, h.htlc.HtlcIndex); err != nil {
25✔
1014
                return err
×
1015
        }
×
1016

1017
        // We encode the sign details last for backwards compatibility.
1018
        err := encodeSignDetails(w, h.htlcResolution.SignDetails)
25✔
1019
        if err != nil {
25✔
1020
                return err
×
1021
        }
×
1022

1023
        return nil
25✔
1024
}
1025

1026
// newTimeoutResolverFromReader attempts to decode an encoded ContractResolver
1027
// from the passed Reader instance, returning an active ContractResolver
1028
// instance.
1029
func newTimeoutResolverFromReader(r io.Reader, resCfg ResolverConfig) (
1030
        *htlcTimeoutResolver, error) {
19✔
1031

19✔
1032
        h := &htlcTimeoutResolver{
19✔
1033
                contractResolverKit: *newContractResolverKit(resCfg),
19✔
1034
        }
19✔
1035

19✔
1036
        // First, we'll read out all the mandatory fields of the
19✔
1037
        // OutgoingHtlcResolution that we store.
19✔
1038
        if err := decodeOutgoingResolution(r, &h.htlcResolution); err != nil {
19✔
1039
                return nil, err
×
1040
        }
×
1041

1042
        // With those fields read, we can now read back the fields that are
1043
        // specific to the resolver itself.
1044
        if err := binary.Read(r, endian, &h.outputIncubating); err != nil {
19✔
1045
                return nil, err
×
1046
        }
×
1047
        if err := binary.Read(r, endian, &h.resolved); err != nil {
19✔
1048
                return nil, err
×
1049
        }
×
1050
        if err := binary.Read(r, endian, &h.broadcastHeight); err != nil {
19✔
1051
                return nil, err
×
1052
        }
×
1053

1054
        if err := binary.Read(r, endian, &h.htlc.HtlcIndex); err != nil {
19✔
1055
                return nil, err
×
1056
        }
×
1057

1058
        // Sign details is a new field that was added to the htlc resolution,
1059
        // so it is serialized last for backwards compatibility. We try to read
1060
        // it, but don't error out if there are not bytes left.
1061
        signDetails, err := decodeSignDetails(r)
19✔
1062
        if err == nil {
38✔
1063
                h.htlcResolution.SignDetails = signDetails
19✔
1064
        } else if err != io.EOF && err != io.ErrUnexpectedEOF {
19✔
1065
                return nil, err
×
1066
        }
×
1067

1068
        h.initReport()
19✔
1069

19✔
1070
        return h, nil
19✔
1071
}
1072

1073
// Supplement adds additional information to the resolver that is required
1074
// before Resolve() is called.
1075
//
1076
// NOTE: Part of the htlcContractResolver interface.
1077
func (h *htlcTimeoutResolver) Supplement(htlc channeldb.HTLC) {
13✔
1078
        h.htlc = htlc
13✔
1079
}
13✔
1080

1081
// HtlcPoint returns the htlc's outpoint on the commitment tx.
1082
//
1083
// NOTE: Part of the htlcContractResolver interface.
1084
func (h *htlcTimeoutResolver) HtlcPoint() wire.OutPoint {
3✔
1085
        return h.htlcResolution.HtlcPoint()
3✔
1086
}
3✔
1087

1088
// SupplementDeadline sets the incomingHTLCExpiryHeight for this outgoing htlc
1089
// resolver.
1090
//
1091
// NOTE: Part of the htlcContractResolver interface.
1092
func (h *htlcTimeoutResolver) SupplementDeadline(d fn.Option[int32]) {
2✔
1093
        h.incomingHTLCExpiryHeight = d
2✔
1094
}
2✔
1095

1096
// A compile time assertion to ensure htlcTimeoutResolver meets the
1097
// ContractResolver interface.
1098
var _ htlcContractResolver = (*htlcTimeoutResolver)(nil)
1099

1100
// spendResult is used to hold the result of a spend event from either a
1101
// mempool spend or a block spend.
1102
type spendResult struct {
1103
        // spend contains the details of the spend.
1104
        spend *chainntnfs.SpendDetail
1105

1106
        // err is the error that occurred during the spend notification.
1107
        err error
1108
}
1109

1110
// waitForMempoolOrBlockSpend waits for the htlc output to be spent by a
1111
// transaction that's either be found in the mempool or in a block.
1112
func (h *htlcTimeoutResolver) waitForMempoolOrBlockSpend(op wire.OutPoint,
1113
        pkScript []byte) (*chainntnfs.SpendDetail, error) {
2✔
1114

2✔
1115
        log.Infof("%T(%v): waiting for spent of HTLC output %v to be found "+
2✔
1116
                "in mempool or block", h, h.htlcResolution.ClaimOutpoint, op)
2✔
1117

2✔
1118
        // Subscribe for block spent(confirmed).
2✔
1119
        blockSpent, err := h.Notifier.RegisterSpendNtfn(
2✔
1120
                &op, pkScript, h.broadcastHeight,
2✔
1121
        )
2✔
1122
        if err != nil {
2✔
1123
                return nil, fmt.Errorf("register spend: %w", err)
×
1124
        }
×
1125

1126
        // Subscribe for mempool spent(unconfirmed).
1127
        mempoolSpent, err := h.Mempool.SubscribeMempoolSpent(op)
2✔
1128
        if err != nil {
2✔
1129
                return nil, fmt.Errorf("register mempool spend: %w", err)
×
1130
        }
×
1131

1132
        // Create a result chan that will be used to receive the spending
1133
        // events.
1134
        result := make(chan *spendResult, 2)
2✔
1135

2✔
1136
        // Create a goroutine that will wait for either a mempool spend or a
2✔
1137
        // block spend.
2✔
1138
        //
2✔
1139
        // NOTE: no need to use waitgroup here as when the resolver exits, the
2✔
1140
        // goroutine will return on the quit channel.
2✔
1141
        go h.consumeSpendEvents(result, blockSpent.Spend, mempoolSpent.Spend)
2✔
1142

2✔
1143
        // Wait for the spend event to be received.
2✔
1144
        select {
2✔
1145
        case event := <-result:
2✔
1146
                // Cancel the mempool subscription as we don't need it anymore.
2✔
1147
                h.Mempool.CancelMempoolSpendEvent(mempoolSpent)
2✔
1148

2✔
1149
                return event.spend, event.err
2✔
1150

1151
        case <-h.quit:
2✔
1152
                return nil, errResolverShuttingDown
2✔
1153
        }
1154
}
1155

1156
// consumeSpendEvents consumes the spend events from the block and mempool
1157
// subscriptions. It exits when a spend event is received from the block, or
1158
// the resolver itself quits. When a spend event is received from the mempool,
1159
// however, it won't exit but continuing to wait for a spend event from the
1160
// block subscription.
1161
//
1162
// NOTE: there could be a case where we found the preimage in the mempool,
1163
// which will be added to our preimage beacon and settle the incoming link,
1164
// meanwhile the timeout sweep tx confirms. This outgoing HTLC is "free" money
1165
// and is not swept here.
1166
//
1167
// TODO(yy): sweep the outgoing htlc if it's confirmed.
1168
func (h *htlcTimeoutResolver) consumeSpendEvents(resultChan chan *spendResult,
1169
        blockSpent, mempoolSpent <-chan *chainntnfs.SpendDetail) {
2✔
1170

2✔
1171
        op := h.HtlcPoint()
2✔
1172

2✔
1173
        // Create a result chan to hold the results.
2✔
1174
        result := &spendResult{}
2✔
1175

2✔
1176
        // hasMempoolSpend is a flag that indicates whether we have found a
2✔
1177
        // preimage spend from the mempool. This is used to determine whether
2✔
1178
        // to checkpoint the resolver or not when later we found the
2✔
1179
        // corresponding block spend.
2✔
1180
        hasMempoolSpent := false
2✔
1181

2✔
1182
        // Wait for a spend event to arrive.
2✔
1183
        for {
4✔
1184
                select {
2✔
1185
                // If a spend event is received from the block, this outgoing
1186
                // htlc is spent either by the remote via the preimage or by us
1187
                // via the timeout. We can exit the loop and `claimCleanUp`
1188
                // will feed the preimage to the beacon if found. This treats
1189
                // the block as the final judge and the preimage spent won't
1190
                // appear in the mempool afterwards.
1191
                //
1192
                // NOTE: if a reorg happens, the preimage spend can appear in
1193
                // the mempool again. Though a rare case, we should handle it
1194
                // in a dedicated reorg system.
1195
                case spendDetail, ok := <-blockSpent:
2✔
1196
                        if !ok {
2✔
1197
                                result.err = fmt.Errorf("block spent err: %w",
×
1198
                                        errResolverShuttingDown)
×
1199
                        } else {
2✔
1200
                                log.Debugf("Found confirmed spend of HTLC "+
2✔
1201
                                        "output %s in tx=%s", op,
2✔
1202
                                        spendDetail.SpenderTxHash)
2✔
1203

2✔
1204
                                result.spend = spendDetail
2✔
1205

2✔
1206
                                // Once confirmed, persist the state on disk if
2✔
1207
                                // we haven't seen the output's spending tx in
2✔
1208
                                // mempool before.
2✔
1209
                                //
2✔
1210
                                // NOTE: we don't checkpoint the resolver if
2✔
1211
                                // it's spending tx has already been found in
2✔
1212
                                // mempool - the resolver will take care of the
2✔
1213
                                // checkpoint in its `claimCleanUp`. If we do
2✔
1214
                                // checkpoint here, however, we'd create a new
2✔
1215
                                // record in db for the same htlc resolver
2✔
1216
                                // which won't be cleaned up later, resulting
2✔
1217
                                // the channel to stay in unresolved state.
2✔
1218
                                //
2✔
1219
                                // TODO(yy): when fee bumper is implemented, we
2✔
1220
                                // need to further check whether this is a
2✔
1221
                                // preimage spend. Also need to refactor here
2✔
1222
                                // to save us some indentation.
2✔
1223
                                if !hasMempoolSpent {
4✔
1224
                                        result.err = h.checkPointSecondLevelTx()
2✔
1225
                                }
2✔
1226
                        }
1227

1228
                        // Send the result and exit the loop.
1229
                        resultChan <- result
2✔
1230

2✔
1231
                        return
2✔
1232

1233
                // If a spend event is received from the mempool, this can be
1234
                // either the 2nd stage timeout tx or a preimage spend from the
1235
                // remote. We will further check whether the spend reveals the
1236
                // preimage and add it to the preimage beacon to settle the
1237
                // incoming link.
1238
                //
1239
                // NOTE: we won't exit the loop here so we can continue to
1240
                // watch for the block spend to check point the resolution.
1241
                case spendDetail, ok := <-mempoolSpent:
2✔
1242
                        if !ok {
2✔
1243
                                result.err = fmt.Errorf("mempool spent err: %w",
×
1244
                                        errResolverShuttingDown)
×
1245

×
1246
                                // This is an internal error so we exit.
×
1247
                                resultChan <- result
×
1248

×
1249
                                return
×
1250
                        }
×
1251

1252
                        log.Debugf("Found mempool spend of HTLC output %s "+
2✔
1253
                                "in tx=%s", op, spendDetail.SpenderTxHash)
2✔
1254

2✔
1255
                        // Check whether the spend reveals the preimage, if not
2✔
1256
                        // continue the loop.
2✔
1257
                        hasPreimage := isPreimageSpend(
2✔
1258
                                h.isTaproot(), spendDetail,
2✔
1259
                                h.htlcResolution.SignedTimeoutTx != nil,
2✔
1260
                        )
2✔
1261
                        if !hasPreimage {
4✔
1262
                                log.Debugf("HTLC output %s spent doesn't "+
2✔
1263
                                        "reveal preimage", op)
2✔
1264
                                continue
2✔
1265
                        }
1266

1267
                        // Found the preimage spend, send the result and
1268
                        // continue the loop.
1269
                        result.spend = spendDetail
2✔
1270
                        resultChan <- result
2✔
1271

2✔
1272
                        // Set the hasMempoolSpent flag to true so we won't
2✔
1273
                        // checkpoint the resolver again in db.
2✔
1274
                        hasMempoolSpent = true
2✔
1275

2✔
1276
                        continue
2✔
1277

1278
                // If the resolver exits, we exit the goroutine.
1279
                case <-h.quit:
2✔
1280
                        result.err = errResolverShuttingDown
2✔
1281
                        resultChan <- result
2✔
1282

2✔
1283
                        return
2✔
1284
                }
1285
        }
1286
}
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc