• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

lightningnetwork / lnd / 12313002221

13 Dec 2024 09:25AM UTC coverage: 57.486% (+8.6%) from 48.92%
12313002221

push

github

web-flow
Merge pull request #9343 from ellemouton/contextGuard

fn: expand the ContextGuard and add tests

101902 of 177264 relevant lines covered (57.49%)

24909.26 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

83.89
/routing/blindedpath/blinded_path.go
1
package blindedpath
2

3
import (
4
        "bytes"
5
        "errors"
6
        "fmt"
7
        "math"
8
        "sort"
9

10
        "github.com/btcsuite/btcd/btcec/v2"
11
        "github.com/btcsuite/btcd/btcutil"
12
        sphinx "github.com/lightningnetwork/lightning-onion"
13
        "github.com/lightningnetwork/lnd/channeldb"
14
        "github.com/lightningnetwork/lnd/graph/db/models"
15
        "github.com/lightningnetwork/lnd/lnwire"
16
        "github.com/lightningnetwork/lnd/record"
17
        "github.com/lightningnetwork/lnd/routing/route"
18
        "github.com/lightningnetwork/lnd/tlv"
19
        "github.com/lightningnetwork/lnd/zpay32"
20
)
21

22
const (
23
        // oneMillion is a constant used frequently in fee rate calculations.
24
        oneMillion = uint32(1_000_000)
25
)
26

27
// errInvalidBlindedPath indicates that the chosen real path is not usable as
28
// a blinded path.
29
var errInvalidBlindedPath = errors.New("the chosen path results in an " +
30
        "unusable blinded path")
31

32
// BuildBlindedPathCfg defines the various resources and configuration values
33
// required to build a blinded payment path to this node.
34
type BuildBlindedPathCfg struct {
35
        // FindRoutes returns a set of routes to us that can be used for the
36
        // construction of blinded paths. These routes will consist of real
37
        // nodes advertising the route blinding feature bit. They may be of
38
        // various lengths and may even contain only a single hop. Any route
39
        // shorter than MinNumHops will be padded with dummy hops during route
40
        // construction.
41
        FindRoutes func(value lnwire.MilliSatoshi) ([]*route.Route, error)
42

43
        // FetchChannelEdgesByID attempts to look up the two directed edges for
44
        // the channel identified by the channel ID.
45
        FetchChannelEdgesByID func(chanID uint64) (*models.ChannelEdgeInfo,
46
                *models.ChannelEdgePolicy, *models.ChannelEdgePolicy, error)
47

48
        // FetchOurOpenChannels fetches this node's set of open channels.
49
        FetchOurOpenChannels func() ([]*channeldb.OpenChannel, error)
50

51
        // BestHeight can be used to fetch the best block height that this node
52
        // is aware of.
53
        BestHeight func() (uint32, error)
54

55
        // AddPolicyBuffer is a function that can be used to alter the policy
56
        // values of the given channel edge. The main reason for doing this is
57
        // to add a safety buffer so that if the node makes small policy changes
58
        // during the lifetime of the blinded path, then the path remains valid
59
        // and so probing is more difficult. Note that this will only be called
60
        // for the policies of real nodes and won't be applied to
61
        // DefaultDummyHopPolicy.
62
        AddPolicyBuffer func(policy *BlindedHopPolicy) (*BlindedHopPolicy,
63
                error)
64

65
        // PathID is the secret data to embed in the blinded path data that we
66
        // will receive back as the recipient. This is the equivalent of the
67
        // payment address used in normal payments. It lets the recipient check
68
        // that the path is being used in the correct context.
69
        PathID []byte
70

71
        // ValueMsat is the payment amount in milli-satoshis that must be
72
        // routed. This will be used for selecting appropriate routes to use for
73
        // the blinded path.
74
        ValueMsat lnwire.MilliSatoshi
75

76
        // MinFinalCLTVExpiryDelta is the minimum CLTV delta that the recipient
77
        // requires for the final hop of the payment.
78
        //
79
        // NOTE that the caller is responsible for adding additional block
80
        // padding to this value to account for blocks being mined while the
81
        // payment is in-flight.
82
        MinFinalCLTVExpiryDelta uint32
83

84
        // BlocksUntilExpiry is the number of blocks that this blinded path
85
        // should remain valid for. This is a relative number of blocks. This
86
        // number in addition with a potential minimum cltv delta for the last
87
        // hop and some block padding will be the payment constraint which is
88
        // part of the blinded hop info. Every htlc using the provided blinded
89
        // hops cannot have a higher cltv delta otherwise it will get rejected
90
        // by the forwarding nodes or the final node.
91
        //
92
        // This number should at least be greater than the invoice expiry time
93
        // so that the blinded route is always valid as long as the invoice is
94
        // valid.
95
        BlocksUntilExpiry uint32
96

97
        // MinNumHops is the minimum number of hops that each blinded path
98
        // should be. If the number of hops in a path returned by FindRoutes is
99
        // less than this number, then dummy hops will be post-fixed to the
100
        // route.
101
        MinNumHops uint8
102

103
        // DefaultDummyHopPolicy holds the policy values that should be used for
104
        // dummy hops in the cases where it cannot be derived via other means
105
        // such as averaging the policy values of other hops on the path. This
106
        // would happen in the case where the introduction node is also the
107
        // introduction node. If these default policy values are used, then
108
        // the MaxHTLCMsat value must be carefully chosen.
109
        DefaultDummyHopPolicy *BlindedHopPolicy
110
}
111

112
// BuildBlindedPaymentPaths uses the passed config to construct a set of blinded
113
// payment paths that can be added to the invoice.
114
func BuildBlindedPaymentPaths(cfg *BuildBlindedPathCfg) (
115
        []*zpay32.BlindedPaymentPath, error) {
4✔
116

4✔
117
        // Find some appropriate routes for the value to be routed. This will
4✔
118
        // return a set of routes made up of real nodes.
4✔
119
        routes, err := cfg.FindRoutes(cfg.ValueMsat)
4✔
120
        if err != nil {
4✔
121
                return nil, err
×
122
        }
×
123

124
        if len(routes) == 0 {
4✔
125
                return nil, fmt.Errorf("could not find any routes to self to " +
×
126
                        "use for blinded route construction")
×
127
        }
×
128

129
        // Not every route returned will necessarily result in a usable blinded
130
        // path and so the number of paths returned might be less than the
131
        // number of real routes returned by FindRoutes above.
132
        paths := make([]*zpay32.BlindedPaymentPath, 0, len(routes))
4✔
133

4✔
134
        // For each route returned, we will construct the associated blinded
4✔
135
        // payment path.
4✔
136
        for _, route := range routes {
10✔
137
                // Extract the information we need from the route.
6✔
138
                candidatePath := extractCandidatePath(route)
6✔
139

6✔
140
                // Pad the given route with dummy hops until the minimum number
6✔
141
                // of hops is met.
6✔
142
                candidatePath.padWithDummyHops(cfg.MinNumHops)
6✔
143

6✔
144
                path, err := buildBlindedPaymentPath(cfg, candidatePath)
6✔
145
                if errors.Is(err, errInvalidBlindedPath) {
6✔
146
                        log.Debugf("Not using route (%s) as a blinded path "+
×
147
                                "since it resulted in an invalid blinded path",
×
148
                                route)
×
149

×
150
                        continue
×
151
                } else if err != nil {
8✔
152
                        log.Errorf("Not using route (%s) as a blinded path: %v",
2✔
153
                                route, err)
2✔
154

2✔
155
                        continue
2✔
156
                }
157

158
                log.Debugf("Route selected for blinded path: %s", candidatePath)
4✔
159

4✔
160
                paths = append(paths, path)
4✔
161
        }
162

163
        if len(paths) == 0 {
4✔
164
                return nil, fmt.Errorf("could not build any blinded paths")
×
165
        }
×
166

167
        return paths, nil
4✔
168
}
169

170
// buildBlindedPaymentPath takes a route from an introduction node to this node
171
// and uses the given config to convert it into a blinded payment path.
172
func buildBlindedPaymentPath(cfg *BuildBlindedPathCfg, path *candidatePath) (
173
        *zpay32.BlindedPaymentPath, error) {
6✔
174

6✔
175
        hops, minHTLC, maxHTLC, err := collectRelayInfo(cfg, path)
6✔
176
        if err != nil {
8✔
177
                return nil, fmt.Errorf("could not collect blinded path relay "+
2✔
178
                        "info: %w", err)
2✔
179
        }
2✔
180

181
        relayInfo := make([]*record.PaymentRelayInfo, len(hops))
4✔
182
        for i, hop := range hops {
14✔
183
                relayInfo[i] = hop.relayInfo
10✔
184
        }
10✔
185

186
        // Using the collected relay info, we can calculate the aggregated
187
        // policy values for the route.
188
        baseFee, feeRate, cltvDelta := calcBlindedPathPolicies(
4✔
189
                relayInfo, uint16(cfg.MinFinalCLTVExpiryDelta),
4✔
190
        )
4✔
191

4✔
192
        currentHeight, err := cfg.BestHeight()
4✔
193
        if err != nil {
4✔
194
                return nil, err
×
195
        }
×
196

197
        // The next step is to calculate the payment constraints to communicate
198
        // to each hop and to package up the hop info for each hop. We will
199
        // handle the final hop first since its payload looks a bit different,
200
        // and then we will iterate backwards through the remaining hops.
201
        //
202
        // Note that the +1 here is required because the route won't have the
203
        // introduction node included in the "Hops". But since we want to create
204
        // payloads for all the hops as well as the introduction node, we add 1
205
        // here to get the full hop length along with the introduction node.
206
        hopDataSet := make([]*hopData, 0, len(path.hops)+1)
4✔
207

4✔
208
        // Determine the maximum CLTV expiry for the destination node.
4✔
209
        cltvExpiry := currentHeight + cfg.BlocksUntilExpiry +
4✔
210
                cfg.MinFinalCLTVExpiryDelta
4✔
211

4✔
212
        constraints := &record.PaymentConstraints{
4✔
213
                MaxCltvExpiry:   cltvExpiry,
4✔
214
                HtlcMinimumMsat: minHTLC,
4✔
215
        }
4✔
216

4✔
217
        // If the blinded route has only a source node (introduction node) and
4✔
218
        // no hops, then the destination node is also the source node.
4✔
219
        finalHopPubKey := path.introNode
4✔
220
        if len(path.hops) > 0 {
7✔
221
                finalHopPubKey = path.hops[len(path.hops)-1].pubKey
3✔
222
        }
3✔
223

224
        // For the final hop, we only send it the path ID and payment
225
        // constraints.
226
        info, err := buildFinalHopRouteData(
4✔
227
                finalHopPubKey, cfg.PathID, constraints,
4✔
228
        )
4✔
229
        if err != nil {
4✔
230
                return nil, err
×
231
        }
×
232

233
        hopDataSet = append(hopDataSet, info)
4✔
234

4✔
235
        // Iterate through the remaining (non-final) hops, back to front.
4✔
236
        for i := len(hops) - 1; i >= 0; i-- {
14✔
237
                hop := hops[i]
10✔
238

10✔
239
                cltvExpiry += uint32(hop.relayInfo.CltvExpiryDelta)
10✔
240

10✔
241
                constraints = &record.PaymentConstraints{
10✔
242
                        MaxCltvExpiry:   cltvExpiry,
10✔
243
                        HtlcMinimumMsat: minHTLC,
10✔
244
                }
10✔
245

10✔
246
                var info *hopData
10✔
247
                if hop.nextHopIsDummy {
14✔
248
                        info, err = buildDummyRouteData(
4✔
249
                                hop.hopPubKey, hop.relayInfo, constraints,
4✔
250
                        )
4✔
251
                } else {
10✔
252
                        info, err = buildHopRouteData(
6✔
253
                                hop.hopPubKey, hop.nextSCID, hop.relayInfo,
6✔
254
                                constraints,
6✔
255
                        )
6✔
256
                }
6✔
257
                if err != nil {
10✔
258
                        return nil, err
×
259
                }
×
260

261
                hopDataSet = append(hopDataSet, info)
10✔
262
        }
263

264
        // Sort the hop info list in reverse order so that the data for the
265
        // introduction node is first.
266
        sort.Slice(hopDataSet, func(i, j int) bool {
27✔
267
                return j < i
23✔
268
        })
23✔
269

270
        // Add padding to each route data instance until the encrypted data
271
        // blobs are all the same size.
272
        paymentPath, _, err := padHopInfo(
4✔
273
                hopDataSet, true, record.AverageDummyHopPayloadSize,
4✔
274
        )
4✔
275
        if err != nil {
4✔
276
                return nil, err
×
277
        }
×
278

279
        // Derive an ephemeral session key.
280
        sessionKey, err := btcec.NewPrivateKey()
4✔
281
        if err != nil {
4✔
282
                return nil, err
×
283
        }
×
284

285
        // Encrypt the hop info.
286
        blindedPath, err := sphinx.BuildBlindedPath(sessionKey, paymentPath)
4✔
287
        if err != nil {
4✔
288
                return nil, err
×
289
        }
×
290

291
        if len(blindedPath.BlindedHops) < 1 {
4✔
292
                return nil, fmt.Errorf("blinded path must have at least one " +
×
293
                        "hop")
×
294
        }
×
295

296
        // Overwrite the introduction point's blinded pub key with the real
297
        // pub key since then we can use this more compact format in the
298
        // invoice without needing to encode the un-used blinded node pub key of
299
        // the intro node.
300
        blindedPath.BlindedHops[0].BlindedNodePub =
4✔
301
                blindedPath.IntroductionPoint
4✔
302

4✔
303
        // Now construct a z32 blinded path.
4✔
304
        return &zpay32.BlindedPaymentPath{
4✔
305
                FeeBaseMsat:                 uint32(baseFee),
4✔
306
                FeeRate:                     feeRate,
4✔
307
                CltvExpiryDelta:             cltvDelta,
4✔
308
                HTLCMinMsat:                 uint64(minHTLC),
4✔
309
                HTLCMaxMsat:                 uint64(maxHTLC),
4✔
310
                Features:                    lnwire.EmptyFeatureVector(),
4✔
311
                FirstEphemeralBlindingPoint: blindedPath.BlindingPoint,
4✔
312
                Hops:                        blindedPath.BlindedHops,
4✔
313
        }, nil
4✔
314
}
315

316
// hopRelayInfo packages together the relay info to send to hop on a blinded
317
// path along with the pub key of that hop and the SCID that the hop should
318
// forward the payment on to.
319
type hopRelayInfo struct {
320
        hopPubKey      route.Vertex
321
        nextSCID       lnwire.ShortChannelID
322
        relayInfo      *record.PaymentRelayInfo
323
        nextHopIsDummy bool
324
}
325

326
// collectRelayInfo collects the relay policy rules for each relay hop on the
327
// route and applies any policy buffers.
328
//
329
// For the blinded route:
330
//
331
//        C --chan(CB)--> B --chan(BA)--> A
332
//
333
// where C is the introduction node, the route.Route struct we are given will
334
// have SourcePubKey set to C's pub key, and then it will have the following
335
// route.Hops:
336
//
337
//   - PubKeyBytes: B, ChannelID: chan(CB)
338
//   - PubKeyBytes: A, ChannelID: chan(BA)
339
//
340
// We, however, want to collect the channel policies for the following PubKey
341
// and ChannelID pairs:
342
//
343
//   - PubKey: C, ChannelID: chan(CB)
344
//   - PubKey: B, ChannelID: chan(BA)
345
//
346
// Therefore, when we go through the route and its hops to collect policies, our
347
// index for collecting public keys will be trailing that of the channel IDs by
348
// 1.
349
//
350
// For any dummy hops on the route, this function also decides what to use as
351
// policy values for the dummy hops. If there are other real hops, then the
352
// dummy hop policy values are derived by taking the average of the real
353
// policy values. If there are no real hops (in other words we are the
354
// introduction node), then we use some default routing values and we use the
355
// average of our channel capacities for the MaxHTLC value.
356
func collectRelayInfo(cfg *BuildBlindedPathCfg, path *candidatePath) (
357
        []*hopRelayInfo, lnwire.MilliSatoshi, lnwire.MilliSatoshi, error) {
6✔
358

6✔
359
        var (
6✔
360
                // The first pub key is that of the introduction node.
6✔
361
                hopSource = path.introNode
6✔
362

6✔
363
                // A collection of the policy values of real hops on the path.
6✔
364
                policies = make(map[uint64]*BlindedHopPolicy)
6✔
365

6✔
366
                hasDummyHops bool
6✔
367
        )
6✔
368

6✔
369
        // On this first iteration, we just collect policy values of the real
6✔
370
        // hops on the path.
6✔
371
        for _, hop := range path.hops {
16✔
372
                // Once we have hit a dummy hop, all hops after will be dummy
10✔
373
                // hops too.
10✔
374
                if hop.isDummy {
12✔
375
                        hasDummyHops = true
2✔
376

2✔
377
                        break
2✔
378
                }
379

380
                // For real hops, retrieve the channel policy for this hop's
381
                // channel ID in the direction pointing away from the hopSource
382
                // node.
383
                policy, err := getNodeChannelPolicy(
8✔
384
                        cfg, hop.channelID, hopSource,
8✔
385
                )
8✔
386
                if err != nil {
10✔
387
                        return nil, 0, 0, err
2✔
388
                }
2✔
389

390
                policies[hop.channelID] = policy
6✔
391

6✔
392
                // This hop's pub key will be the policy creator for the next
6✔
393
                // hop.
6✔
394
                hopSource = hop.pubKey
6✔
395
        }
396

397
        var (
4✔
398
                dummyHopPolicy *BlindedHopPolicy
4✔
399
                err            error
4✔
400
        )
4✔
401

4✔
402
        // If the path does have dummy hops, we need to decide which policy
4✔
403
        // values to use for these hops.
4✔
404
        if hasDummyHops {
6✔
405
                dummyHopPolicy, err = computeDummyHopPolicy(
2✔
406
                        cfg.DefaultDummyHopPolicy, cfg.FetchOurOpenChannels,
2✔
407
                        policies,
2✔
408
                )
2✔
409
                if err != nil {
2✔
410
                        return nil, 0, 0, err
×
411
                }
×
412
        }
413

414
        // We iterate through the hops one more time. This time it is to
415
        // buffer the policy values, collect the payment relay info to send to
416
        // each hop, and to compute the min and max HTLC values for the path.
417
        var (
4✔
418
                hops    = make([]*hopRelayInfo, 0, len(path.hops))
4✔
419
                minHTLC lnwire.MilliSatoshi
4✔
420
                maxHTLC lnwire.MilliSatoshi
4✔
421
        )
4✔
422
        // The first pub key is that of the introduction node.
4✔
423
        hopSource = path.introNode
4✔
424
        for _, hop := range path.hops {
14✔
425
                var (
10✔
426
                        policy = dummyHopPolicy
10✔
427
                        ok     bool
10✔
428
                        err    error
10✔
429
                )
10✔
430

10✔
431
                if !hop.isDummy {
16✔
432
                        policy, ok = policies[hop.channelID]
6✔
433
                        if !ok {
6✔
434
                                return nil, 0, 0, fmt.Errorf("no cached "+
×
435
                                        "policy found for channel ID: %d",
×
436
                                        hop.channelID)
×
437
                        }
×
438
                }
439

440
                if policy.MinHTLCMsat > cfg.ValueMsat {
10✔
441
                        return nil, 0, 0, fmt.Errorf("%w: minHTLC of hop "+
×
442
                                "policy larger than payment amt: sentAmt(%v), "+
×
443
                                "minHTLC(%v)", errInvalidBlindedPath,
×
444
                                cfg.ValueMsat, policy.MinHTLCMsat)
×
445
                }
×
446

447
                bufferPolicy, err := cfg.AddPolicyBuffer(policy)
10✔
448
                if err != nil {
10✔
449
                        return nil, 0, 0, err
×
450
                }
×
451

452
                // We only use the new buffered policy if the new minHTLC value
453
                // does not violate the sender amount.
454
                //
455
                // NOTE: We don't check this for maxHTLC, because the payment
456
                // amount can always be splitted using MPP.
457
                if bufferPolicy.MinHTLCMsat <= cfg.ValueMsat {
20✔
458
                        policy = bufferPolicy
10✔
459
                }
10✔
460

461
                // If this is the first policy we are collecting, then use this
462
                // policy to set the base values for min/max htlc.
463
                if len(hops) == 0 {
13✔
464
                        minHTLC = policy.MinHTLCMsat
3✔
465
                        maxHTLC = policy.MaxHTLCMsat
3✔
466
                } else {
10✔
467
                        if policy.MinHTLCMsat > minHTLC {
7✔
468
                                minHTLC = policy.MinHTLCMsat
×
469
                        }
×
470

471
                        if policy.MaxHTLCMsat < maxHTLC {
7✔
472
                                maxHTLC = policy.MaxHTLCMsat
×
473
                        }
×
474
                }
475

476
                // From the policy values for this hop, we can collect the
477
                // payment relay info that we will send to this hop.
478
                hops = append(hops, &hopRelayInfo{
10✔
479
                        hopPubKey: hopSource,
10✔
480
                        nextSCID:  lnwire.NewShortChanIDFromInt(hop.channelID),
10✔
481
                        relayInfo: &record.PaymentRelayInfo{
10✔
482
                                FeeRate:         policy.FeeRate,
10✔
483
                                BaseFee:         policy.BaseFee,
10✔
484
                                CltvExpiryDelta: policy.CLTVExpiryDelta,
10✔
485
                        },
10✔
486
                        nextHopIsDummy: hop.isDummy,
10✔
487
                })
10✔
488

10✔
489
                // This hop's pub key will be the policy creator for the next
10✔
490
                // hop.
10✔
491
                hopSource = hop.pubKey
10✔
492
        }
493

494
        // It can happen that there is no HTLC-range overlap between the various
495
        // hops along the path. We return errInvalidBlindedPath to indicate that
496
        // this route was not usable
497
        if minHTLC > maxHTLC {
4✔
498
                return nil, 0, 0, fmt.Errorf("%w: resulting blinded path min "+
×
499
                        "HTLC value is larger than the resulting max HTLC "+
×
500
                        "value", errInvalidBlindedPath)
×
501
        }
×
502

503
        return hops, minHTLC, maxHTLC, nil
4✔
504
}
505

506
// buildDummyRouteData constructs the record.BlindedRouteData struct for the
507
// given a hop in a blinded route where the following hop is a dummy hop.
508
func buildDummyRouteData(node route.Vertex, relayInfo *record.PaymentRelayInfo,
509
        constraints *record.PaymentConstraints) (*hopData, error) {
4✔
510

4✔
511
        nodeID, err := btcec.ParsePubKey(node[:])
4✔
512
        if err != nil {
4✔
513
                return nil, err
×
514
        }
×
515

516
        return &hopData{
4✔
517
                data: record.NewDummyHopRouteData(
4✔
518
                        nodeID, *relayInfo, *constraints,
4✔
519
                ),
4✔
520
                nodeID: nodeID,
4✔
521
        }, nil
4✔
522
}
523

524
// computeDummyHopPolicy determines policy values to use for a dummy hop on a
525
// blinded path. If other real policy values exist, then we use the average of
526
// those values for the dummy hop policy values. Otherwise, in the case were
527
// there are no real policy values due to this node being the introduction node,
528
// we use the provided default policy values, and we get the average capacity of
529
// this node's channels to compute a MaxHTLC value.
530
func computeDummyHopPolicy(defaultPolicy *BlindedHopPolicy,
531
        fetchOurChannels func() ([]*channeldb.OpenChannel, error),
532
        policies map[uint64]*BlindedHopPolicy) (*BlindedHopPolicy, error) {
2✔
533

2✔
534
        numPolicies := len(policies)
2✔
535

2✔
536
        // If there are no real policies to calculate an average policy from,
2✔
537
        // then we use the default. The only thing we need to calculate here
2✔
538
        // though is the MaxHTLC value.
2✔
539
        if numPolicies == 0 {
2✔
540
                chans, err := fetchOurChannels()
×
541
                if err != nil {
×
542
                        return nil, err
×
543
                }
×
544

545
                if len(chans) == 0 {
×
546
                        return nil, fmt.Errorf("node has no channels to " +
×
547
                                "receive on")
×
548
                }
×
549

550
                // Calculate the average channel capacity and use this as the
551
                // MaxHTLC value.
552
                var maxHTLC btcutil.Amount
×
553
                for _, c := range chans {
×
554
                        maxHTLC += c.Capacity
×
555
                }
×
556

557
                maxHTLC = btcutil.Amount(float64(maxHTLC) / float64(len(chans)))
×
558

×
559
                return &BlindedHopPolicy{
×
560
                        CLTVExpiryDelta: defaultPolicy.CLTVExpiryDelta,
×
561
                        FeeRate:         defaultPolicy.FeeRate,
×
562
                        BaseFee:         defaultPolicy.BaseFee,
×
563
                        MinHTLCMsat:     defaultPolicy.MinHTLCMsat,
×
564
                        MaxHTLCMsat:     lnwire.NewMSatFromSatoshis(maxHTLC),
×
565
                }, nil
×
566
        }
567

568
        var avgPolicy BlindedHopPolicy
2✔
569

2✔
570
        for _, policy := range policies {
6✔
571
                avgPolicy.MinHTLCMsat += policy.MinHTLCMsat
4✔
572
                avgPolicy.MaxHTLCMsat += policy.MaxHTLCMsat
4✔
573
                avgPolicy.BaseFee += policy.BaseFee
4✔
574
                avgPolicy.FeeRate += policy.FeeRate
4✔
575
                avgPolicy.CLTVExpiryDelta += policy.CLTVExpiryDelta
4✔
576
        }
4✔
577

578
        avgPolicy.MinHTLCMsat = lnwire.MilliSatoshi(
2✔
579
                float64(avgPolicy.MinHTLCMsat) / float64(numPolicies),
2✔
580
        )
2✔
581
        avgPolicy.MaxHTLCMsat = lnwire.MilliSatoshi(
2✔
582
                float64(avgPolicy.MaxHTLCMsat) / float64(numPolicies),
2✔
583
        )
2✔
584
        avgPolicy.BaseFee = lnwire.MilliSatoshi(
2✔
585
                float64(avgPolicy.BaseFee) / float64(numPolicies),
2✔
586
        )
2✔
587
        avgPolicy.FeeRate = uint32(
2✔
588
                float64(avgPolicy.FeeRate) / float64(numPolicies),
2✔
589
        )
2✔
590
        avgPolicy.CLTVExpiryDelta = uint16(
2✔
591
                float64(avgPolicy.CLTVExpiryDelta) / float64(numPolicies),
2✔
592
        )
2✔
593

2✔
594
        return &avgPolicy, nil
2✔
595
}
596

597
// buildHopRouteData constructs the record.BlindedRouteData struct for the given
598
// non-final hop on a blinded path and packages it with the node's ID.
599
func buildHopRouteData(node route.Vertex, scid lnwire.ShortChannelID,
600
        relayInfo *record.PaymentRelayInfo,
601
        constraints *record.PaymentConstraints) (*hopData, error) {
6✔
602

6✔
603
        // Wrap up the data we want to send to this hop.
6✔
604
        blindedRouteHopData := record.NewNonFinalBlindedRouteData(
6✔
605
                scid, nil, *relayInfo, constraints, nil,
6✔
606
        )
6✔
607

6✔
608
        nodeID, err := btcec.ParsePubKey(node[:])
6✔
609
        if err != nil {
6✔
610
                return nil, err
×
611
        }
×
612

613
        return &hopData{
6✔
614
                data:   blindedRouteHopData,
6✔
615
                nodeID: nodeID,
6✔
616
        }, nil
6✔
617
}
618

619
// buildFinalHopRouteData constructs the record.BlindedRouteData struct for the
620
// final hop and packages it with the real node ID of the node it is intended
621
// for.
622
func buildFinalHopRouteData(node route.Vertex, pathID []byte,
623
        constraints *record.PaymentConstraints) (*hopData, error) {
4✔
624

4✔
625
        blindedRouteHopData := record.NewFinalHopBlindedRouteData(
4✔
626
                constraints, pathID,
4✔
627
        )
4✔
628
        nodeID, err := btcec.ParsePubKey(node[:])
4✔
629
        if err != nil {
4✔
630
                return nil, err
×
631
        }
×
632

633
        return &hopData{
4✔
634
                data:   blindedRouteHopData,
4✔
635
                nodeID: nodeID,
4✔
636
        }, nil
4✔
637
}
638

639
// getNodeChanPolicy fetches the routing policy info for the given channel and
640
// node pair.
641
func getNodeChannelPolicy(cfg *BuildBlindedPathCfg, chanID uint64,
642
        nodeID route.Vertex) (*BlindedHopPolicy, error) {
8✔
643

8✔
644
        // Attempt to fetch channel updates for the given channel. We will have
8✔
645
        // at most two updates for a given channel.
8✔
646
        _, update1, update2, err := cfg.FetchChannelEdgesByID(chanID)
8✔
647
        if err != nil {
10✔
648
                return nil, err
2✔
649
        }
2✔
650

651
        // Now we need to determine which of the updates was created by the
652
        // node in question. We know the update is the correct one if the
653
        // "ToNode" for the fetched policy is _not_ equal to the node ID in
654
        // question.
655
        var policy *models.ChannelEdgePolicy
6✔
656
        switch {
6✔
657
        case update1 != nil && !bytes.Equal(update1.ToNode[:], nodeID[:]):
6✔
658
                policy = update1
6✔
659

660
        case update2 != nil && !bytes.Equal(update2.ToNode[:], nodeID[:]):
×
661
                policy = update2
×
662

663
        default:
×
664
                return nil, fmt.Errorf("no channel updates found from node "+
×
665
                        "%s for channel %d", nodeID, chanID)
×
666
        }
667

668
        return &BlindedHopPolicy{
6✔
669
                CLTVExpiryDelta: policy.TimeLockDelta,
6✔
670
                FeeRate:         uint32(policy.FeeProportionalMillionths),
6✔
671
                BaseFee:         policy.FeeBaseMSat,
6✔
672
                MinHTLCMsat:     policy.MinHTLC,
6✔
673
                MaxHTLCMsat:     policy.MaxHTLC,
6✔
674
        }, nil
6✔
675
}
676

677
// candidatePath holds all the information about a route to this node that we
678
// need in order to build a blinded route.
679
type candidatePath struct {
680
        introNode   route.Vertex
681
        finalNodeID route.Vertex
682
        hops        []*blindedPathHop
683
}
684

685
// String returns a string representation of the candidatePath which can be
686
// useful for logging and debugging.
687
func (c *candidatePath) String() string {
×
688
        str := fmt.Sprintf("[%s (intro node)]", c.introNode)
×
689

×
690
        for _, hop := range c.hops {
×
691
                if hop.isDummy {
×
692
                        str += "--->[dummy hop]"
×
693
                        continue
×
694
                }
695

696
                str += fmt.Sprintf("--<%d>-->[%s]", hop.channelID, hop.pubKey)
×
697
        }
698

699
        return str
×
700
}
701

702
// padWithDummyHops will append n dummy hops to the candidatePath hop set. The
703
// pub key for the dummy hop will be the same as the pub key for the final hop
704
// of the path. That way, the final hop will be able to decrypt the data
705
// encrypted for each dummy hop.
706
func (c *candidatePath) padWithDummyHops(n uint8) {
6✔
707
        for len(c.hops) < int(n) {
14✔
708
                c.hops = append(c.hops, &blindedPathHop{
8✔
709
                        pubKey:  c.finalNodeID,
8✔
710
                        isDummy: true,
8✔
711
                })
8✔
712
        }
8✔
713
}
714

715
// blindedPathHop holds the information we need to know about a hop in a route
716
// in order to use it in the construction of a blinded path.
717
type blindedPathHop struct {
718
        // pubKey is the real pub key of a node on a blinded path.
719
        pubKey route.Vertex
720

721
        // channelID is the channel along which the previous hop should forward
722
        // their HTLC in order to reach this hop.
723
        channelID uint64
724

725
        // isDummy is true if this hop is an appended dummy hop.
726
        isDummy bool
727
}
728

729
// extractCandidatePath extracts the data it needs from the given route.Route in
730
// order to construct a candidatePath.
731
func extractCandidatePath(path *route.Route) *candidatePath {
6✔
732
        var (
6✔
733
                hops      = make([]*blindedPathHop, len(path.Hops))
6✔
734
                finalNode = path.SourcePubKey
6✔
735
        )
6✔
736
        for i, hop := range path.Hops {
16✔
737
                hops[i] = &blindedPathHop{
10✔
738
                        pubKey:    hop.PubKeyBytes,
10✔
739
                        channelID: hop.ChannelID,
10✔
740
                }
10✔
741

10✔
742
                if i == len(path.Hops)-1 {
15✔
743
                        finalNode = hop.PubKeyBytes
5✔
744
                }
5✔
745
        }
746

747
        return &candidatePath{
6✔
748
                introNode:   path.SourcePubKey,
6✔
749
                finalNodeID: finalNode,
6✔
750
                hops:        hops,
6✔
751
        }
6✔
752
}
753

754
// BlindedHopPolicy holds the set of relay policy values to use for a channel
755
// in a blinded path.
756
type BlindedHopPolicy struct {
757
        CLTVExpiryDelta uint16
758
        FeeRate         uint32
759
        BaseFee         lnwire.MilliSatoshi
760
        MinHTLCMsat     lnwire.MilliSatoshi
761
        MaxHTLCMsat     lnwire.MilliSatoshi
762
}
763

764
// AddPolicyBuffer constructs the bufferedChanPolicies for a path hop by taking
765
// its actual policy values and multiplying them by the given multipliers.
766
// The base fee, fee rate and minimum HTLC msat values are adjusted via the
767
// incMultiplier while the maximum HTLC msat value is adjusted via the
768
// decMultiplier. If adjustments of the HTLC values no longer make sense
769
// then the original HTLC value is used.
770
func AddPolicyBuffer(policy *BlindedHopPolicy, incMultiplier,
771
        decMultiplier float64) (*BlindedHopPolicy, error) {
8✔
772

8✔
773
        if incMultiplier < 1 {
9✔
774
                return nil, fmt.Errorf("blinded path policy increase " +
1✔
775
                        "multiplier must be greater than or equal to 1")
1✔
776
        }
1✔
777

778
        if decMultiplier < 0 || decMultiplier > 1 {
9✔
779
                return nil, fmt.Errorf("blinded path policy decrease " +
2✔
780
                        "multiplier must be in the range [0;1]")
2✔
781
        }
2✔
782

783
        var (
5✔
784
                minHTLCMsat = lnwire.MilliSatoshi(
5✔
785
                        float64(policy.MinHTLCMsat) * incMultiplier,
5✔
786
                )
5✔
787
                maxHTLCMsat = lnwire.MilliSatoshi(
5✔
788
                        float64(policy.MaxHTLCMsat) * decMultiplier,
5✔
789
                )
5✔
790
        )
5✔
791

5✔
792
        // Make sure the new minimum is not more than the original maximum.
5✔
793
        // If it is, then just stick to the original minimum.
5✔
794
        if minHTLCMsat > policy.MaxHTLCMsat {
6✔
795
                minHTLCMsat = policy.MinHTLCMsat
1✔
796
        }
1✔
797

798
        // Make sure the new maximum is not less than the original minimum.
799
        // If it is, then just stick to the original maximum.
800
        if maxHTLCMsat < policy.MinHTLCMsat {
6✔
801
                maxHTLCMsat = policy.MaxHTLCMsat
1✔
802
        }
1✔
803

804
        // Also ensure that the new htlc bounds make sense. If the new minimum
805
        // is greater than the new maximum, then just let both to their original
806
        // values.
807
        if minHTLCMsat > maxHTLCMsat {
6✔
808
                minHTLCMsat = policy.MinHTLCMsat
1✔
809
                maxHTLCMsat = policy.MaxHTLCMsat
1✔
810
        }
1✔
811

812
        return &BlindedHopPolicy{
5✔
813
                CLTVExpiryDelta: uint16(
5✔
814
                        float64(policy.CLTVExpiryDelta) * incMultiplier,
5✔
815
                ),
5✔
816
                FeeRate: uint32(
5✔
817
                        float64(policy.FeeRate) * incMultiplier,
5✔
818
                ),
5✔
819
                BaseFee: lnwire.MilliSatoshi(
5✔
820
                        float64(policy.BaseFee) * incMultiplier,
5✔
821
                ),
5✔
822
                MinHTLCMsat: minHTLCMsat,
5✔
823
                MaxHTLCMsat: maxHTLCMsat,
5✔
824
        }, nil
5✔
825
}
826

827
// calcBlindedPathPolicies computes the accumulated policy values for the path.
828
// These values include the total base fee, the total proportional fee and the
829
// total CLTV delta. This function assumes that all the passed relay infos have
830
// already been adjusted with a buffer to account for easy probing attacks.
831
func calcBlindedPathPolicies(relayInfo []*record.PaymentRelayInfo,
832
        ourMinFinalCLTVDelta uint16) (lnwire.MilliSatoshi, uint32, uint16) {
5✔
833

5✔
834
        var (
5✔
835
                totalFeeBase lnwire.MilliSatoshi
5✔
836
                totalFeeProp uint32
5✔
837
                totalCLTV    = ourMinFinalCLTVDelta
5✔
838
        )
5✔
839
        // Use the algorithms defined in BOLT 4 to calculate the accumulated
5✔
840
        // relay fees for the route:
5✔
841
        //nolint:ll
5✔
842
        // https://github.com/lightning/bolts/blob/db278ab9b2baa0b30cfe79fb3de39280595938d3/04-onion-routing.md?plain=1#L255
5✔
843
        for i := len(relayInfo) - 1; i >= 0; i-- {
17✔
844
                info := relayInfo[i]
12✔
845

12✔
846
                totalFeeBase = calcNextTotalBaseFee(
12✔
847
                        totalFeeBase, info.BaseFee, info.FeeRate,
12✔
848
                )
12✔
849

12✔
850
                totalFeeProp = calcNextTotalFeeRate(totalFeeProp, info.FeeRate)
12✔
851

12✔
852
                totalCLTV += info.CltvExpiryDelta
12✔
853
        }
12✔
854

855
        return totalFeeBase, totalFeeProp, totalCLTV
5✔
856
}
857

858
// calcNextTotalBaseFee takes the current total accumulated base fee of a
859
// blinded path at hop `n` along with the fee rate and base fee of the hop at
860
// `n+1` and uses these to calculate the accumulated base fee at hop `n+1`.
861
func calcNextTotalBaseFee(currentTotal, hopBaseFee lnwire.MilliSatoshi,
862
        hopFeeRate uint32) lnwire.MilliSatoshi {
12✔
863

12✔
864
        numerator := (uint32(hopBaseFee) * oneMillion) +
12✔
865
                (uint32(currentTotal) * (oneMillion + hopFeeRate)) +
12✔
866
                oneMillion - 1
12✔
867

12✔
868
        return lnwire.MilliSatoshi(numerator / oneMillion)
12✔
869
}
12✔
870

871
// calculateNextTotalFeeRate takes the current total accumulated fee rate of a
872
// blinded path at hop `n` along with the fee rate of the hop at `n+1` and uses
873
// these to calculate the accumulated fee rate at hop `n+1`.
874
func calcNextTotalFeeRate(currentTotal, hopFeeRate uint32) uint32 {
12✔
875
        numerator := (currentTotal+hopFeeRate)*oneMillion +
12✔
876
                currentTotal*hopFeeRate + oneMillion - 1
12✔
877

12✔
878
        return numerator / oneMillion
12✔
879
}
12✔
880

881
// hopData packages the record.BlindedRouteData for a hop on a blinded path with
882
// the real node ID of that hop.
883
type hopData struct {
884
        data   *record.BlindedRouteData
885
        nodeID *btcec.PublicKey
886
}
887

888
// padStats can be used to keep track of various pieces of data that we collect
889
// during a call to padHopInfo. This is useful for logging and for test
890
// assertions.
891
type padStats struct {
892
        minPayloadSize  int
893
        maxPayloadSize  int
894
        finalPaddedSize int
895
        numIterations   int
896
}
897

898
// padHopInfo iterates over a set of record.BlindedRouteData and adds padding
899
// where needed until the resulting encrypted data blobs are all the same size.
900
// This may take a few iterations due to the fact that a TLV field is used to
901
// add this padding. For example, if we want to add a 1 byte padding to a
902
// record.BlindedRouteData when it does not yet have any padding, then adding
903
// a 1 byte padding will actually add 3 bytes due to the bytes required when
904
// adding the initial type and length bytes. However, on the next iteration if
905
// we again add just 1 byte, then only a single byte will be added. The same
906
// iteration is required for padding values on the BigSize encoding bucket
907
// edges. The number of iterations that this function takes is also returned for
908
// testing purposes. If prePad is true, then zero byte padding is added to each
909
// payload that does not yet have padding. This will save some iterations for
910
// the majority of cases. minSize can be used to specify a minimum size that all
911
// payloads should be.
912
func padHopInfo(hopInfo []*hopData, prePad bool, minSize int) (
913
        []*sphinx.HopInfo, *padStats, error) {
111✔
914

111✔
915
        var (
111✔
916
                paymentPath = make([]*sphinx.HopInfo, len(hopInfo))
111✔
917
                stats       = padStats{finalPaddedSize: minSize}
111✔
918
        )
111✔
919

111✔
920
        // Pre-pad each payload with zero byte padding (if it does not yet have
111✔
921
        // padding) to save a couple of iterations in the majority of cases.
111✔
922
        if prePad {
216✔
923
                for _, info := range hopInfo {
2,395✔
924
                        if info.data.Padding.IsSome() {
2,290✔
925
                                continue
×
926
                        }
927

928
                        info.data.PadBy(0)
2,290✔
929
                }
930
        }
931

932
        for {
234✔
933
                stats.numIterations++
123✔
934

123✔
935
                // On each iteration of the loop, we first determine the
123✔
936
                // current largest encoded data blob size. This will be the
123✔
937
                // size we aim to get the others to match.
123✔
938
                var (
123✔
939
                        maxLen = minSize
123✔
940
                        minLen = math.MaxInt8
123✔
941
                )
123✔
942
                for i, hop := range hopInfo {
2,453✔
943
                        plainText, err := record.EncodeBlindedRouteData(
2,330✔
944
                                hop.data,
2,330✔
945
                        )
2,330✔
946
                        if err != nil {
2,330✔
947
                                return nil, nil, err
×
948
                        }
×
949

950
                        if len(plainText) > maxLen {
2,449✔
951
                                maxLen = len(plainText)
119✔
952

119✔
953
                                // Update the stats to take note of this new
119✔
954
                                // max since this may be the final max that all
119✔
955
                                // payloads will be padded to.
119✔
956
                                stats.finalPaddedSize = maxLen
119✔
957
                        }
119✔
958
                        if len(plainText) < minLen {
2,453✔
959
                                minLen = len(plainText)
123✔
960
                        }
123✔
961

962
                        paymentPath[i] = &sphinx.HopInfo{
2,330✔
963
                                NodePub:   hop.nodeID,
2,330✔
964
                                PlainText: plainText,
2,330✔
965
                        }
2,330✔
966
                }
967

968
                // If this is our first iteration, then we take note of the min
969
                // and max lengths of the payloads pre-padding for logging
970
                // later.
971
                if stats.numIterations == 1 {
234✔
972
                        stats.minPayloadSize = minLen
111✔
973
                        stats.maxPayloadSize = maxLen
111✔
974
                }
111✔
975

976
                // Now we iterate over them again and determine which ones we
977
                // need to add padding to.
978
                var numEqual int
123✔
979
                for i, hop := range hopInfo {
2,453✔
980
                        plainText := paymentPath[i].PlainText
2,330✔
981

2,330✔
982
                        // If the plaintext length is equal to the desired
2,330✔
983
                        // length, then we can continue. We use numEqual to
2,330✔
984
                        // keep track of how many have the same length.
2,330✔
985
                        if len(plainText) == maxLen {
4,642✔
986
                                numEqual++
2,312✔
987

2,312✔
988
                                continue
2,312✔
989
                        }
990

991
                        // If we previously added padding to this hop, we keep
992
                        // the length of that initial padding too.
993
                        var existingPadding int
18✔
994
                        hop.data.Padding.WhenSome(
18✔
995
                                func(p tlv.RecordT[tlv.TlvType1, []byte]) {
33✔
996
                                        existingPadding = len(p.Val)
15✔
997
                                },
15✔
998
                        )
999

1000
                        // Add some padding bytes to the hop.
1001
                        hop.data.PadBy(
18✔
1002
                                existingPadding + maxLen - len(plainText),
18✔
1003
                        )
18✔
1004
                }
1005

1006
                // If all the payloads have the same length, we can exit the
1007
                // loop.
1008
                if numEqual == len(hopInfo) {
234✔
1009
                        break
111✔
1010
                }
1011
        }
1012

1013
        log.Debugf("Finished padding %d blinded path payloads to %d bytes "+
111✔
1014
                "each where the pre-padded min and max sizes were %d and %d "+
111✔
1015
                "bytes respectively", len(hopInfo), stats.finalPaddedSize,
111✔
1016
                stats.minPayloadSize, stats.maxPayloadSize)
111✔
1017

111✔
1018
        return paymentPath, &stats, nil
111✔
1019
}
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc