• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

lightningnetwork / lnd / 12430766295

20 Dec 2024 11:38AM UTC coverage: 52.607% (-6.1%) from 58.716%
12430766295

Pull #9384

github

ziggie1984
funding: refactor gossip msg code

We almost never need to create all messages at the same time
(ChanUpdate,ChanAnnouncement,Proof) so we split it up into own
functions.
Pull Request #9384: Refactor gossip msg code

224 of 279 new or added lines in 7 files covered. (80.29%)

27070 existing lines in 437 files now uncovered.

53540 of 101773 relevant lines covered (52.61%)

4.11 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

45.22
/watchtower/wtdb/range_index.go
1
package wtdb
2

3
import (
4
        "fmt"
5
        "sync"
6
)
7

8
// rangeItem represents the start and end values of a range.
9
type rangeItem struct {
10
        start uint64
11
        end   uint64
12
}
13

14
// RangeIndexOption describes the signature of a functional option that can be
15
// used to modify the behaviour of a RangeIndex.
16
type RangeIndexOption func(*RangeIndex)
17

18
// WithSerializeUint64Fn is a functional option that can be used to set the
19
// function to be used to do the serialization of a uint64 into a byte slice.
20
func WithSerializeUint64Fn(fn func(uint64) ([]byte, error)) RangeIndexOption {
4✔
21
        return func(index *RangeIndex) {
8✔
22
                index.serializeUint64 = fn
4✔
23
        }
4✔
24
}
25

26
// RangeIndex can be used to keep track of which numbers have been added to a
27
// set. It does so by keeping track of a sorted list of rangeItems. Each
28
// rangeItem has a start and end value of a range where all values in-between
29
// have been added to the set. It works well in situations where it is expected
30
// numbers in the set are not sparse.
31
type RangeIndex struct {
32
        // set is a sorted list of rangeItem.
33
        set []rangeItem
34

35
        // mu is used to ensure safe access to set.
36
        mu sync.Mutex
37

38
        // serializeUint64 is the function that can be used to convert a uint64
39
        // to a byte slice.
40
        serializeUint64 func(uint64) ([]byte, error)
41
}
42

43
// NewRangeIndex constructs a new RangeIndex. An initial set of ranges may be
44
// passed to the function in the form of a map.
45
func NewRangeIndex(ranges map[uint64]uint64,
46
        opts ...RangeIndexOption) (*RangeIndex, error) {
4✔
47

4✔
48
        index := &RangeIndex{
4✔
49
                serializeUint64: defaultSerializeUint64,
4✔
50
                set:             make([]rangeItem, 0),
4✔
51
        }
4✔
52

4✔
53
        // Apply any functional options.
4✔
54
        for _, o := range opts {
8✔
55
                o(index)
4✔
56
        }
4✔
57

58
        for s, e := range ranges {
8✔
59
                if err := index.addRange(s, e); err != nil {
4✔
UNCOV
60
                        return nil, err
×
UNCOV
61
                }
×
62
        }
63

64
        return index, nil
4✔
65
}
66

67
// addRange can be used to add an entire new range to the set. This method
68
// should only ever be called by NewRangeIndex to initialise the in-memory
69
// structure and so the RangeIndex mutex is not held during this method.
70
func (a *RangeIndex) addRange(start, end uint64) error {
4✔
71
        // Check that the given range is valid.
4✔
72
        if start > end {
4✔
UNCOV
73
                return fmt.Errorf("invalid range. Start height %d is larger "+
×
UNCOV
74
                        "than end height %d", start, end)
×
UNCOV
75
        }
×
76

77
        // min is a helper closure that will return the minimum of two uint64s.
78
        min := func(a, b uint64) uint64 {
4✔
UNCOV
79
                if a < b {
×
UNCOV
80
                        return a
×
UNCOV
81
                }
×
82

UNCOV
83
                return b
×
84
        }
85

86
        // max is a helper closure that will return the maximum of two uint64s.
87
        max := func(a, b uint64) uint64 {
4✔
UNCOV
88
                if a > b {
×
UNCOV
89
                        return a
×
UNCOV
90
                }
×
91

UNCOV
92
                return b
×
93
        }
94

95
        // Collect the ranges that fall before and after the new range along
96
        // with the start and end values of the new range.
97
        var before, after []rangeItem
4✔
98
        for _, x := range a.set {
8✔
99
                // If the new start value can't extend the current ranges end
4✔
100
                // value, then the two cannot be merged. The range is added to
4✔
101
                // the group of ranges that fall before the new range.
4✔
102
                if x.end+1 < start {
8✔
103
                        before = append(before, x)
4✔
104
                        continue
4✔
105
                }
106

107
                // If the current ranges start value does not follow on directly
108
                // from the new end value, then the two cannot be merged. The
109
                // range is added to the group of ranges that fall after the new
110
                // range.
111
                if end+1 < x.start {
2✔
112
                        after = append(after, x)
1✔
113
                        continue
1✔
114
                }
115

116
                // Otherwise, there is an overlap and so the two can be merged.
UNCOV
117
                start = min(start, x.start)
×
UNCOV
118
                end = max(end, x.end)
×
119
        }
120

121
        // Re-construct the range index set.
122
        a.set = append(append(before, rangeItem{
4✔
123
                start: start,
4✔
124
                end:   end,
4✔
125
        }), after...)
4✔
126

4✔
127
        return nil
4✔
128
}
129

130
// IsInIndex returns true if the given number is in the range set.
UNCOV
131
func (a *RangeIndex) IsInIndex(n uint64) bool {
×
UNCOV
132
        a.mu.Lock()
×
UNCOV
133
        defer a.mu.Unlock()
×
UNCOV
134

×
UNCOV
135
        _, isCovered := a.lowerBoundIndex(n)
×
UNCOV
136

×
UNCOV
137
        return isCovered
×
UNCOV
138
}
×
139

140
// NumInSet returns the number of items covered by the range set.
141
func (a *RangeIndex) NumInSet() uint64 {
4✔
142
        a.mu.Lock()
4✔
143
        defer a.mu.Unlock()
4✔
144

4✔
145
        var numItems uint64
4✔
146
        for _, r := range a.set {
8✔
147
                numItems += r.end - r.start + 1
4✔
148
        }
4✔
149

150
        return numItems
4✔
151
}
152

153
// MaxHeight returns the highest number covered in the range.
UNCOV
154
func (a *RangeIndex) MaxHeight() uint64 {
×
UNCOV
155
        a.mu.Lock()
×
UNCOV
156
        defer a.mu.Unlock()
×
UNCOV
157

×
UNCOV
158
        if len(a.set) == 0 {
×
159
                return 0
×
160
        }
×
161

UNCOV
162
        return a.set[len(a.set)-1].end
×
163
}
164

165
// GetAllRanges returns a copy of the range set in the form of a map.
UNCOV
166
func (a *RangeIndex) GetAllRanges() map[uint64]uint64 {
×
UNCOV
167
        a.mu.Lock()
×
UNCOV
168
        defer a.mu.Unlock()
×
UNCOV
169

×
UNCOV
170
        cp := make(map[uint64]uint64, len(a.set))
×
UNCOV
171
        for _, item := range a.set {
×
UNCOV
172
                cp[item.start] = item.end
×
UNCOV
173
        }
×
174

UNCOV
175
        return cp
×
176
}
177

178
// lowerBoundIndex returns the index of the RangeIndex that is most appropriate
179
// for the new value, n. In other words, it returns the index of the rangeItem
180
// set of the range where the start value is the highest start value in the set
181
// that is still lower than or equal to the given number, n. The returned
182
// boolean is true if the given number is already covered in the RangeIndex.
183
// A returned index of -1 indicates that no lower bound range exists in the set.
184
// Since the most likely case is that the new number will just extend the
185
// highest range, a check is first done to see if this is the case which will
186
// make the methods' computational complexity O(1). Otherwise, a binary search
187
// is done which brings the computational complexity to O(log N).
188
func (a *RangeIndex) lowerBoundIndex(n uint64) (int, bool) {
4✔
189
        // If the set is empty, then there is no such index and the value
4✔
190
        // definitely is not in the set.
4✔
191
        if len(a.set) == 0 {
4✔
UNCOV
192
                return -1, false
×
UNCOV
193
        }
×
194

195
        // In most cases, the last index item will be the one we want. So just
196
        // do a quick check on that index first to avoid doing the binary
197
        // search.
198
        lastIndex := len(a.set) - 1
4✔
199
        lastRange := a.set[lastIndex]
4✔
200
        if lastRange.start <= n {
8✔
201
                return lastIndex, lastRange.end >= n
4✔
202
        }
4✔
203

204
        // Otherwise, do a binary search to find the index of interest.
UNCOV
205
        var (
×
UNCOV
206
                low        = 0
×
UNCOV
207
                high       = len(a.set) - 1
×
UNCOV
208
                rangeIndex = -1
×
UNCOV
209
        )
×
UNCOV
210
        for {
×
UNCOV
211
                mid := (low + high) / 2
×
UNCOV
212
                currentRange := a.set[mid]
×
UNCOV
213

×
UNCOV
214
                switch {
×
UNCOV
215
                case currentRange.start > n:
×
UNCOV
216
                        // If the start of the range is greater than n, we can
×
UNCOV
217
                        // completely cut out that entire part of the array.
×
UNCOV
218
                        high = mid
×
219

UNCOV
220
                case currentRange.start < n:
×
UNCOV
221
                        // If the range already includes the given height, we
×
UNCOV
222
                        // can stop searching now.
×
UNCOV
223
                        if currentRange.end >= n {
×
UNCOV
224
                                return mid, true
×
UNCOV
225
                        }
×
226

227
                        // If the start of the range is smaller than n, we can
228
                        // store this as the new best index to return.
UNCOV
229
                        rangeIndex = mid
×
UNCOV
230

×
UNCOV
231
                        // If low and mid are already equal, then increment low
×
UNCOV
232
                        // by 1. Exit if this means that low is now greater than
×
UNCOV
233
                        // high.
×
UNCOV
234
                        if low == mid {
×
UNCOV
235
                                low = mid + 1
×
UNCOV
236
                                if low > high {
×
237
                                        return rangeIndex, false
×
238
                                }
×
UNCOV
239
                        } else {
×
UNCOV
240
                                low = mid
×
UNCOV
241
                        }
×
242

UNCOV
243
                        continue
×
244

UNCOV
245
                default:
×
UNCOV
246
                        // If the height is equal to the start value of the
×
UNCOV
247
                        // current range that mid is pointing to, then the
×
UNCOV
248
                        // height is already covered.
×
UNCOV
249
                        return mid, true
×
250
                }
251

252
                // Exit if we have checked all the ranges.
UNCOV
253
                if low == high {
×
UNCOV
254
                        break
×
255
                }
256
        }
257

UNCOV
258
        return rangeIndex, false
×
259
}
260

261
// KVStore is an interface representing a key-value store.
262
type KVStore interface {
263
        // Put saves the specified key/value pair to the store. Keys that do not
264
        // already exist are added and keys that already exist are overwritten.
265
        Put(key, value []byte) error
266

267
        // Delete removes the specified key from the bucket. Deleting a key that
268
        // does not exist does not return an error.
269
        Delete(key []byte) error
270
}
271

272
// Add adds a single number to the range set. It first attempts to apply the
273
// necessary changes to the passed KV store and then only if this succeeds, will
274
// the changes be applied to the in-memory structure.
275
func (a *RangeIndex) Add(newHeight uint64, kv KVStore) error {
4✔
276
        a.mu.Lock()
4✔
277
        defer a.mu.Unlock()
4✔
278

4✔
279
        // Compute the changes that will need to be applied to both the sorted
4✔
280
        // rangeItem array representation and the key-value store representation
4✔
281
        // of the range index.
4✔
282
        arrayChanges, kvStoreChanges := a.getChanges(newHeight)
4✔
283

4✔
284
        // First attempt to apply the KV store changes. Only if this succeeds
4✔
285
        // will we apply the changes to our in-memory range index structure.
4✔
286
        err := a.applyKVChanges(kv, kvStoreChanges)
4✔
287
        if err != nil {
4✔
UNCOV
288
                return err
×
UNCOV
289
        }
×
290

291
        // Since the DB changes were successful, we can now commit the
292
        // changes to our in-memory representation of the range set.
293
        a.applyArrayChanges(arrayChanges)
4✔
294

4✔
295
        return nil
4✔
296
}
297

298
// applyKVChanges applies the given set of kvChanges to a KV store. It is
299
// assumed that a transaction is being held on the kv store so that if any
300
// of the actions of the function fails, the changes will be reverted.
301
func (a *RangeIndex) applyKVChanges(kv KVStore, changes *kvChanges) error {
4✔
302
        // Exit early if there are no changes to apply.
4✔
303
        if kv == nil || changes == nil {
4✔
UNCOV
304
                return nil
×
UNCOV
305
        }
×
306

307
        // Check if any range pair needs to be deleted.
308
        if changes.deleteKVKey != nil {
4✔
UNCOV
309
                del, err := a.serializeUint64(*changes.deleteKVKey)
×
UNCOV
310
                if err != nil {
×
311
                        return err
×
312
                }
×
313

UNCOV
314
                if err := kv.Delete(del); err != nil {
×
315
                        return err
×
316
                }
×
317
        }
318

319
        start, err := a.serializeUint64(changes.key)
4✔
320
        if err != nil {
4✔
321
                return err
×
322
        }
×
323

324
        end, err := a.serializeUint64(changes.value)
4✔
325
        if err != nil {
4✔
326
                return err
×
327
        }
×
328

329
        return kv.Put(start, end)
4✔
330
}
331

332
// applyArrayChanges applies the given arrayChanges to the in-memory RangeIndex
333
// itself. This should only be done once the persisted kv store changes have
334
// already been applied.
335
func (a *RangeIndex) applyArrayChanges(changes *arrayChanges) {
4✔
336
        if changes == nil {
4✔
UNCOV
337
                return
×
UNCOV
338
        }
×
339

340
        if changes.indexToDelete != nil {
4✔
UNCOV
341
                a.set = append(
×
UNCOV
342
                        a.set[:*changes.indexToDelete],
×
UNCOV
343
                        a.set[*changes.indexToDelete+1:]...,
×
UNCOV
344
                )
×
UNCOV
345
        }
×
346

347
        if changes.newIndex != nil {
8✔
348
                switch {
4✔
349
                case *changes.newIndex == 0:
4✔
350
                        a.set = append([]rangeItem{{
4✔
351
                                start: changes.start,
4✔
352
                                end:   changes.end,
4✔
353
                        }}, a.set...)
4✔
354

355
                case *changes.newIndex == len(a.set):
4✔
356
                        a.set = append(a.set, rangeItem{
4✔
357
                                start: changes.start,
4✔
358
                                end:   changes.end,
4✔
359
                        })
4✔
360

UNCOV
361
                default:
×
UNCOV
362
                        a.set = append(
×
UNCOV
363
                                a.set[:*changes.newIndex+1],
×
UNCOV
364
                                a.set[*changes.newIndex:]...,
×
UNCOV
365
                        )
×
UNCOV
366
                        a.set[*changes.newIndex] = rangeItem{
×
UNCOV
367
                                start: changes.start,
×
UNCOV
368
                                end:   changes.end,
×
UNCOV
369
                        }
×
370
                }
371

372
                return
4✔
373
        }
374

375
        if changes.indexToEdit != nil {
8✔
376
                a.set[*changes.indexToEdit] = rangeItem{
4✔
377
                        start: changes.start,
4✔
378
                        end:   changes.end,
4✔
379
                }
4✔
380
        }
4✔
381
}
382

383
// arrayChanges encompasses the diff to apply to the sorted rangeItem array
384
// representation of a range index. Such a diff will either include adding a
385
// new range or editing an existing range. If an existing range is edited, then
386
// the diff might also include deleting an index (this will be the case if the
387
// editing of the one range results in the merge of another range).
388
type arrayChanges struct {
389
        start uint64
390
        end   uint64
391

392
        // newIndex, if set, is the index of the in-memory range array where a
393
        // new range, [start:end], should be added. newIndex should never be
394
        // set at the same time as indexToEdit or indexToDelete.
395
        newIndex *int
396

397
        // indexToDelete, if set, is the index of the sorted rangeItem array
398
        // that should be deleted. This should be applied before reading the
399
        // index value of indexToEdit. This should not be set at the same time
400
        // as newIndex.
401
        indexToDelete *int
402

403
        // indexToEdit is the index of the in-memory range array that should be
404
        // edited. The range at this index will be changed to [start:end]. This
405
        // should only be read after indexToDelete index has been deleted.
406
        indexToEdit *int
407
}
408

409
// kvChanges encompasses the diff to apply to a KV-store representation of a
410
// range index. A kv-store diff for the addition of a single number to the range
411
// index will include either a brand new key-value pair or the altering of the
412
// value of an existing key. Optionally, the diff may also include the deletion
413
// of an existing key. A deletion will be required if the addition of the new
414
// number results in the merge of two ranges.
415
type kvChanges struct {
416
        key   uint64
417
        value uint64
418

419
        // deleteKVKey, if set, is the key of the kv store representation that
420
        // should be deleted.
421
        deleteKVKey *uint64
422
}
423

424
// getChanges will calculate and return the changes that need to be applied to
425
// both the sorted-rangeItem-array representation and the key-value store
426
// representation of the range index.
427
func (a *RangeIndex) getChanges(n uint64) (*arrayChanges, *kvChanges) {
4✔
428
        // If the set is empty then a new range item is added.
4✔
429
        if len(a.set) == 0 {
8✔
430
                // For the array representation, a new range [n:n] is added to
4✔
431
                // the first index of the array.
4✔
432
                firstIndex := 0
4✔
433
                ac := &arrayChanges{
4✔
434
                        newIndex: &firstIndex,
4✔
435
                        start:    n,
4✔
436
                        end:      n,
4✔
437
                }
4✔
438

4✔
439
                // For the KV representation, a new [n:n] pair is added.
4✔
440
                kvc := &kvChanges{
4✔
441
                        key:   n,
4✔
442
                        value: n,
4✔
443
                }
4✔
444

4✔
445
                return ac, kvc
4✔
446
        }
4✔
447

448
        // Find the index of the lower bound range to the new number.
449
        indexOfRangeBelow, alreadyCovered := a.lowerBoundIndex(n)
4✔
450

4✔
451
        switch {
4✔
452
        // The new number is already covered by the range index. No changes are
453
        // required.
UNCOV
454
        case alreadyCovered:
×
UNCOV
455
                return nil, nil
×
456

457
        // No lower bound index exists.
UNCOV
458
        case indexOfRangeBelow < 0:
×
UNCOV
459
                // Check if the very first range can be merged into this new
×
UNCOV
460
                // one.
×
UNCOV
461
                if n+1 == a.set[0].start {
×
UNCOV
462
                        // If so, the two ranges can be merged and so the start
×
UNCOV
463
                        // value of the range is n and the end value is the end
×
UNCOV
464
                        // of the existing first range.
×
UNCOV
465
                        start := n
×
UNCOV
466
                        end := a.set[0].end
×
UNCOV
467

×
UNCOV
468
                        // For the array representation, we can just edit the
×
UNCOV
469
                        // first entry of the array
×
UNCOV
470
                        editIndex := 0
×
UNCOV
471
                        ac := &arrayChanges{
×
UNCOV
472
                                indexToEdit: &editIndex,
×
UNCOV
473
                                start:       start,
×
UNCOV
474
                                end:         end,
×
UNCOV
475
                        }
×
UNCOV
476

×
UNCOV
477
                        // For the KV store representation, we add a new kv pair
×
UNCOV
478
                        // and delete the range with the key equal to the start
×
UNCOV
479
                        // value of the range we are merging.
×
UNCOV
480
                        kvKeyToDelete := a.set[0].start
×
UNCOV
481
                        kvc := &kvChanges{
×
UNCOV
482
                                key:         start,
×
UNCOV
483
                                value:       end,
×
UNCOV
484
                                deleteKVKey: &kvKeyToDelete,
×
UNCOV
485
                        }
×
UNCOV
486

×
UNCOV
487
                        return ac, kvc
×
UNCOV
488
                }
×
489

490
                // Otherwise, we add a new index.
491

492
                // For the array representation, a new range [n:n] is added to
493
                // the first index of the array.
UNCOV
494
                newIndex := 0
×
UNCOV
495
                ac := &arrayChanges{
×
UNCOV
496
                        newIndex: &newIndex,
×
UNCOV
497
                        start:    n,
×
UNCOV
498
                        end:      n,
×
UNCOV
499
                }
×
UNCOV
500

×
UNCOV
501
                // For the KV representation, a new [n:n] pair is added.
×
UNCOV
502
                kvc := &kvChanges{
×
UNCOV
503
                        key:   n,
×
UNCOV
504
                        value: n,
×
UNCOV
505
                }
×
UNCOV
506

×
UNCOV
507
                return ac, kvc
×
508

509
        // A lower range does exist, and it can be extended to include this new
510
        // number.
511
        case a.set[indexOfRangeBelow].end+1 == n:
4✔
512
                start := a.set[indexOfRangeBelow].start
4✔
513
                end := n
4✔
514
                indexToChange := indexOfRangeBelow
4✔
515

4✔
516
                // If there are no intervals above this one or if there are, but
4✔
517
                // they can't be merged into this one then we just need to edit
4✔
518
                // this interval.
4✔
519
                if indexOfRangeBelow == len(a.set)-1 ||
4✔
520
                        a.set[indexOfRangeBelow+1].start != n+1 {
8✔
521

4✔
522
                        // For the array representation, we just edit the index.
4✔
523
                        ac := &arrayChanges{
4✔
524
                                indexToEdit: &indexToChange,
4✔
525
                                start:       start,
4✔
526
                                end:         end,
4✔
527
                        }
4✔
528

4✔
529
                        // For the key-value representation, we just overwrite
4✔
530
                        // the end value at the existing start key.
4✔
531
                        kvc := &kvChanges{
4✔
532
                                key:   start,
4✔
533
                                value: end,
4✔
534
                        }
4✔
535

4✔
536
                        return ac, kvc
4✔
537
                }
4✔
538

539
                // There is a range above this one that we need to merge into
540
                // this one.
UNCOV
541
                delIndex := indexOfRangeBelow + 1
×
UNCOV
542
                end = a.set[delIndex].end
×
UNCOV
543

×
UNCOV
544
                // For the array representation, we delete the range above this
×
UNCOV
545
                // one and edit this range to include the end value of the range
×
UNCOV
546
                // above.
×
UNCOV
547
                ac := &arrayChanges{
×
UNCOV
548
                        indexToDelete: &delIndex,
×
UNCOV
549
                        indexToEdit:   &indexToChange,
×
UNCOV
550
                        start:         start,
×
UNCOV
551
                        end:           end,
×
UNCOV
552
                }
×
UNCOV
553

×
UNCOV
554
                // For the kv representation, we tweak the end value of an
×
UNCOV
555
                // existing key and delete the key of the range we are deleting.
×
UNCOV
556
                deleteKey := a.set[delIndex].start
×
UNCOV
557
                kvc := &kvChanges{
×
UNCOV
558
                        key:         start,
×
UNCOV
559
                        value:       end,
×
UNCOV
560
                        deleteKVKey: &deleteKey,
×
UNCOV
561
                }
×
UNCOV
562

×
UNCOV
563
                return ac, kvc
×
564

565
        // A lower range does exist, but it can't be extended to include this
566
        // new number, and so we need to add a new range after the lower bound
567
        // range.
568
        default:
4✔
569
                newIndex := indexOfRangeBelow + 1
4✔
570

4✔
571
                // If there are no ranges above this new one or if there are,
4✔
572
                // but they can't be merged into this new one, then we can just
4✔
573
                // add the new one as is.
4✔
574
                if newIndex == len(a.set) || a.set[newIndex].start != n+1 {
8✔
575
                        ac := &arrayChanges{
4✔
576
                                newIndex: &newIndex,
4✔
577
                                start:    n,
4✔
578
                                end:      n,
4✔
579
                        }
4✔
580

4✔
581
                        kvc := &kvChanges{
4✔
582
                                key:   n,
4✔
583
                                value: n,
4✔
584
                        }
4✔
585

4✔
586
                        return ac, kvc
4✔
587
                }
4✔
588

589
                // Else, we merge the above index.
UNCOV
590
                start := n
×
UNCOV
591
                end := a.set[newIndex].end
×
UNCOV
592
                toEdit := newIndex
×
UNCOV
593

×
UNCOV
594
                // For the array representation, we edit the range above to
×
UNCOV
595
                // include the new start value.
×
UNCOV
596
                ac := &arrayChanges{
×
UNCOV
597
                        indexToEdit: &toEdit,
×
UNCOV
598
                        start:       start,
×
UNCOV
599
                        end:         end,
×
UNCOV
600
                }
×
UNCOV
601

×
UNCOV
602
                // For the kv representation, we insert the new start-end key
×
UNCOV
603
                // value pair and delete the key using the old start value.
×
UNCOV
604
                delKey := a.set[newIndex].start
×
UNCOV
605
                kvc := &kvChanges{
×
UNCOV
606
                        key:         start,
×
UNCOV
607
                        value:       end,
×
UNCOV
608
                        deleteKVKey: &delKey,
×
UNCOV
609
                }
×
UNCOV
610

×
UNCOV
611
                return ac, kvc
×
612
        }
613
}
614

UNCOV
615
func defaultSerializeUint64(i uint64) ([]byte, error) {
×
UNCOV
616
        var b [8]byte
×
UNCOV
617
        byteOrder.PutUint64(b[:], i)
×
UNCOV
618
        return b[:], nil
×
UNCOV
619
}
×
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc