• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

lightningnetwork / lnd / 13423774416

19 Feb 2025 10:39PM UTC coverage: 49.338% (-9.5%) from 58.794%
13423774416

Pull #9484

github

Abdulkbk
lnutils: add createdir util function

This utility function replaces repetitive logic patterns
throughout LND.
Pull Request #9484: lnutils: add createDir util function

0 of 13 new or added lines in 1 file covered. (0.0%)

27149 existing lines in 431 files now uncovered.

100732 of 204168 relevant lines covered (49.34%)

1.54 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

0.0
/watchtower/wtdb/migration4/range_index.go
1
package migration4
2

3
import (
4
        "fmt"
5
        "sync"
6
)
7

8
// rangeItem represents the start and end values of a range.
9
type rangeItem struct {
10
        start uint64
11
        end   uint64
12
}
13

14
// RangeIndexOption describes the signature of a functional option that can be
15
// used to modify the behaviour of a RangeIndex.
16
type RangeIndexOption func(*RangeIndex)
17

18
// WithSerializeUint64Fn is a functional option that can be used to set the
19
// function to be used to do the serialization of a uint64 into a byte slice.
UNCOV
20
func WithSerializeUint64Fn(fn func(uint64) ([]byte, error)) RangeIndexOption {
×
UNCOV
21
        return func(index *RangeIndex) {
×
UNCOV
22
                index.serializeUint64 = fn
×
UNCOV
23
        }
×
24
}
25

26
// RangeIndex can be used to keep track of which numbers have been added to a
27
// set. It does so by keeping track of a sorted list of rangeItems. Each
28
// rangeItem has a start and end value of a range where all values in-between
29
// have been added to the set. It works well in situations where it is expected
30
// numbers in the set are not sparse.
31
type RangeIndex struct {
32
        // set is a sorted list of rangeItem.
33
        set []rangeItem
34

35
        // mu is used to ensure safe access to set.
36
        mu sync.Mutex
37

38
        // serializeUint64 is the function that can be used to convert a uint64
39
        // to a byte slice.
40
        serializeUint64 func(uint64) ([]byte, error)
41
}
42

43
// NewRangeIndex constructs a new RangeIndex. An initial set of ranges may be
44
// passed to the function in the form of a map.
45
func NewRangeIndex(ranges map[uint64]uint64,
UNCOV
46
        opts ...RangeIndexOption) (*RangeIndex, error) {
×
UNCOV
47

×
UNCOV
48
        index := &RangeIndex{
×
UNCOV
49
                serializeUint64: defaultSerializeUint64,
×
UNCOV
50
                set:             make([]rangeItem, 0),
×
UNCOV
51
        }
×
UNCOV
52

×
UNCOV
53
        // Apply any functional options.
×
UNCOV
54
        for _, o := range opts {
×
UNCOV
55
                o(index)
×
UNCOV
56
        }
×
57

UNCOV
58
        for s, e := range ranges {
×
UNCOV
59
                if err := index.addRange(s, e); err != nil {
×
60
                        return nil, err
×
61
                }
×
62
        }
63

UNCOV
64
        return index, nil
×
65
}
66

67
// addRange can be used to add an entire new range to the set. This method
68
// should only ever be called by NewRangeIndex to initialise the in-memory
69
// structure and so the RangeIndex mutex is not held during this method.
UNCOV
70
func (a *RangeIndex) addRange(start, end uint64) error {
×
UNCOV
71
        // Check that the given range is valid.
×
UNCOV
72
        if start > end {
×
73
                return fmt.Errorf("invalid range. Start height %d is larger "+
×
74
                        "than end height %d", start, end)
×
75
        }
×
76

77
        // min is a helper closure that will return the minimum of two uint64s.
78
        min := func(a, b uint64) uint64 {
UNCOV
79
                if a < b {
×
UNCOV
80
                        return a
×
UNCOV
81
                }
×
UNCOV
82

×
UNCOV
83
                return b
×
UNCOV
84
        }
×
UNCOV
85

×
UNCOV
86
        // max is a helper closure that will return the maximum of two uint64s.
×
87
        max := func(a, b uint64) uint64 {
88
                if a > b {
89
                        return a
90
                }
91

92
                return b
93
        }
×
94

×
95
        // Collect the ranges that fall before and after the new range along
×
96
        // with the start and end values of the new range.
97
        var before, after []rangeItem
98
        for _, x := range a.set {
99
                // If the new start value can't extend the current ranges end
×
100
                // value, then the two cannot be merged. The range is added to
×
101
                // the group of ranges that fall before the new range.
102
                if x.end+1 < start {
103
                        before = append(before, x)
UNCOV
104
                        continue
×
UNCOV
105
                }
×
UNCOV
106

×
UNCOV
107
                // If the current ranges start value does not follow on directly
×
UNCOV
108
                // from the new end value, then the two cannot be merged. The
×
UNCOV
109
                // range is added to the group of ranges that fall after the new
×
110
                // range.
111
                if end+1 < x.start {
112
                        after = append(after, x)
UNCOV
113
                        continue
×
UNCOV
114
                }
×
UNCOV
115

×
UNCOV
116
                // Otherwise, there is an overlap and so the two can be merged.
×
UNCOV
117
                start = min(start, x.start)
×
UNCOV
118
                end = max(end, x.end)
×
UNCOV
119
        }
×
UNCOV
120

×
121
        // Re-construct the range index set.
122
        a.set = append(append(before, rangeItem{
123
                start: start,
×
124
                end:   end,
×
125
        }), after...)
×
126

×
127
        return nil
×
128
}
×
129

×
130
// IsInIndex returns true if the given number is in the range set.
×
131
func (a *RangeIndex) IsInIndex(n uint64) bool {
132
        a.mu.Lock()
×
133
        defer a.mu.Unlock()
134

135
        _, isCovered := a.lowerBoundIndex(n)
136

×
137
        return isCovered
×
138
}
×
139

×
140
// NumInSet returns the number of items covered by the range set.
×
141
func (a *RangeIndex) NumInSet() uint64 {
×
142
        a.mu.Lock()
×
143
        defer a.mu.Unlock()
144

×
145
        var numItems uint64
146
        for _, r := range a.set {
147
                numItems += r.end - r.start + 1
UNCOV
148
        }
×
UNCOV
149

×
UNCOV
150
        return numItems
×
UNCOV
151
}
×
UNCOV
152

×
UNCOV
153
// MaxHeight returns the highest number covered in the range.
×
UNCOV
154
func (a *RangeIndex) MaxHeight() uint64 {
×
UNCOV
155
        a.mu.Lock()
×
156
        defer a.mu.Unlock()
UNCOV
157

×
158
        if len(a.set) == 0 {
159
                return 0
160
        }
161

162
        return a.set[len(a.set)-1].end
163
}
164

165
// GetAllRanges returns a copy of the range set in the form of a map.
166
func (a *RangeIndex) GetAllRanges() map[uint64]uint64 {
167
        a.mu.Lock()
168
        defer a.mu.Unlock()
169

UNCOV
170
        cp := make(map[uint64]uint64, len(a.set))
×
UNCOV
171
        for _, item := range a.set {
×
UNCOV
172
                cp[item.start] = item.end
×
UNCOV
173
        }
×
174

×
175
        return cp
×
176
}
177

178
// lowerBoundIndex returns the index of the RangeIndex that is most appropriate
179
// for the new value, n. In other words, it returns the index of the rangeItem
UNCOV
180
// set of the range where the start value is the highest start value in the set
×
UNCOV
181
// that is still lower than or equal to the given number, n. The returned
×
UNCOV
182
// boolean is true if the given number is already covered in the RangeIndex.
×
UNCOV
183
// A returned index of -1 indicates that no lower bound range exists in the set.
×
UNCOV
184
// Since the most likely case is that the new number will just extend the
×
185
// highest range, a check is first done to see if this is the case which will
186
// make the methods' computational complexity O(1). Otherwise, a binary search
UNCOV
187
// is done which brings the computational complexity to O(log N).
×
UNCOV
188
func (a *RangeIndex) lowerBoundIndex(n uint64) (int, bool) {
×
UNCOV
189
        // If the set is empty, then there is no such index and the value
×
UNCOV
190
        // definitely is not in the set.
×
UNCOV
191
        if len(a.set) == 0 {
×
UNCOV
192
                return -1, false
×
UNCOV
193
        }
×
UNCOV
194

×
UNCOV
195
        // In most cases, the last index item will be the one we want. So just
×
UNCOV
196
        // do a quick check on that index first to avoid doing the binary
×
197
        // search.
×
198
        lastIndex := len(a.set) - 1
×
199
        lastRange := a.set[lastIndex]
×
200
        if lastRange.start <= n {
×
201
                return lastIndex, lastRange.end >= n
UNCOV
202
        }
×
UNCOV
203

×
UNCOV
204
        // Otherwise, do a binary search to find the index of interest.
×
UNCOV
205
        var (
×
UNCOV
206
                low        = 0
×
UNCOV
207
                high       = len(a.set) - 1
×
208
                rangeIndex = -1
209
        )
210
        for {
211
                mid := (low + high) / 2
×
212
                currentRange := a.set[mid]
×
213

×
214
                switch {
×
215
                case currentRange.start > n:
×
216
                        // If the start of the range is greater than n, we can
×
217
                        // completely cut out that entire part of the array.
×
218
                        high = mid
×
219

×
220
                case currentRange.start < n:
×
221
                        // If the range already includes the given height, we
×
222
                        // can stop searching now.
×
223
                        if currentRange.end >= n {
×
224
                                return mid, true
225
                        }
×
226

UNCOV
227
                        // If the start of the range is smaller than n, we can
×
UNCOV
228
                        // store this as the new best index to return.
×
UNCOV
229
                        rangeIndex = mid
×
UNCOV
230

×
UNCOV
231
                        // If low and mid are already equal, then increment low
×
232
                        // by 1. Exit if this means that low is now greater than
233
                        // high.
234
                        if low == mid {
235
                                low = mid + 1
×
236
                                if low > high {
×
237
                                        return rangeIndex, false
238
                                }
239
                        } else {
240
                                low = mid
×
241
                        }
242

243
                        continue
244

245
                default:
246
                        // If the height is equal to the start value of the
247
                        // current range that mid is pointing to, then the
248
                        // height is already covered.
249
                        return mid, true
250
                }
251

252
                // Exit if we have checked all the ranges.
253
                if low == high {
254
                        break
255
                }
256
        }
UNCOV
257

×
UNCOV
258
        return rangeIndex, false
×
UNCOV
259
}
×
UNCOV
260

×
UNCOV
261
// KVStore is an interface representing a key-value store.
×
UNCOV
262
type KVStore interface {
×
UNCOV
263
        // Put saves the specified key/value pair to the store. Keys that do not
×
UNCOV
264
        // already exist are added and keys that already exist are overwritten.
×
UNCOV
265
        Put(key, value []byte) error
×
UNCOV
266

×
UNCOV
267
        // Delete removes the specified key from the bucket. Deleting a key that
×
UNCOV
268
        // does not exist does not return an error.
×
UNCOV
269
        Delete(key []byte) error
×
270
}
×
271

×
272
// Add adds a single number to the range set. It first attempts to apply the
273
// necessary changes to the passed KV store and then only if this succeeds, will
274
// the changes be applied to the in-memory structure.
UNCOV
275
func (a *RangeIndex) Add(newHeight uint64, kv KVStore) error {
×
UNCOV
276
        a.mu.Lock()
×
UNCOV
277
        defer a.mu.Unlock()
×
278

279
        // Compute the changes that will need to be applied to both the sorted
280
        // rangeItem array representation and the key-value store representation
281
        // of the range index.
282
        arrayChanges, kvStoreChanges := a.getChanges(newHeight)
UNCOV
283

×
UNCOV
284
        // First attempt to apply the KV store changes. Only if this succeeds
×
UNCOV
285
        // will we apply the changes to our in-memory range index structure.
×
UNCOV
286
        err := a.applyKVChanges(kv, kvStoreChanges)
×
UNCOV
287
        if err != nil {
×
288
                return err
289
        }
290

×
291
        // Since the DB changes were successful, we can now commit the
×
292
        // changes to our in-memory representation of the range set.
×
293
        a.applyArrayChanges(arrayChanges)
×
294

×
295
        return nil
296
}
×
297

×
298
// applyKVChanges applies the given set of kvChanges to a KV store. It is
×
299
// assumed that a transaction is being held on the kv store so that if any
300
// of the actions of the function fails, the changes will be reverted.
301
func (a *RangeIndex) applyKVChanges(kv KVStore, changes *kvChanges) error {
×
302
        // Exit early if there are no changes to apply.
×
303
        if kv == nil || changes == nil {
×
304
                return nil
×
305
        }
306

×
307
        // Check if any range pair needs to be deleted.
×
308
        if changes.deleteKVKey != nil {
×
309
                del, err := a.serializeUint64(*changes.deleteKVKey)
×
310
                if err != nil {
311
                        return err
×
312
                }
313

314
                if err := kv.Delete(del); err != nil {
315
                        return err
316
                }
UNCOV
317
        }
×
UNCOV
318

×
319
        start, err := a.serializeUint64(changes.key)
×
320
        if err != nil {
×
321
                return err
UNCOV
322
        }
×
323

×
324
        end, err := a.serializeUint64(changes.value)
×
325
        if err != nil {
×
326
                return err
×
327
        }
×
328

UNCOV
329
        return kv.Put(start, end)
×
UNCOV
330
}
×
UNCOV
331

×
UNCOV
332
// applyArrayChanges applies the given arrayChanges to the in-memory RangeIndex
×
UNCOV
333
// itself. This should only be done once the persisted kv store changes have
×
UNCOV
334
// already been applied.
×
UNCOV
335
func (a *RangeIndex) applyArrayChanges(changes *arrayChanges) {
×
336
        if changes == nil {
UNCOV
337
                return
×
UNCOV
338
        }
×
UNCOV
339

×
UNCOV
340
        if changes.indexToDelete != nil {
×
UNCOV
341
                a.set = append(
×
342
                        a.set[:*changes.indexToDelete],
343
                        a.set[*changes.indexToDelete+1:]...,
×
344
                )
×
345
        }
×
346

×
347
        if changes.newIndex != nil {
×
348
                switch {
×
349
                case *changes.newIndex == 0:
×
350
                        a.set = append([]rangeItem{{
×
351
                                start: changes.start,
×
352
                                end:   changes.end,
353
                        }}, a.set...)
UNCOV
354

×
355
                case *changes.newIndex == len(a.set):
356
                        a.set = append(a.set, rangeItem{
UNCOV
357
                                start: changes.start,
×
UNCOV
358
                                end:   changes.end,
×
UNCOV
359
                        })
×
UNCOV
360

×
UNCOV
361
                default:
×
UNCOV
362
                        a.set = append(
×
363
                                a.set[:*changes.newIndex+1],
364
                                a.set[*changes.newIndex:]...,
365
                        )
366
                        a.set[*changes.newIndex] = rangeItem{
367
                                start: changes.start,
368
                                end:   changes.end,
369
                        }
370
                }
371

372
                return
373
        }
374

375
        if changes.indexToEdit != nil {
376
                a.set[*changes.indexToEdit] = rangeItem{
377
                        start: changes.start,
378
                        end:   changes.end,
379
                }
380
        }
381
}
382

383
// arrayChanges encompasses the diff to apply to the sorted rangeItem array
384
// representation of a range index. Such a diff will either include adding a
385
// new range or editing an existing range. If an existing range is edited, then
386
// the diff might also include deleting an index (this will be the case if the
387
// editing of the one range results in the merge of another range).
388
type arrayChanges struct {
389
        start uint64
390
        end   uint64
391

392
        // newIndex, if set, is the index of the in-memory range array where a
393
        // new range, [start:end], should be added. newIndex should never be
394
        // set at the same time as indexToEdit or indexToDelete.
395
        newIndex *int
396

397
        // indexToDelete, if set, is the index of the sorted rangeItem array
398
        // that should be deleted. This should be applied before reading the
399
        // index value of indexToEdit. This should not be set at the same time
400
        // as newIndex.
401
        indexToDelete *int
402

403
        // indexToEdit is the index of the in-memory range array that should be
404
        // edited. The range at this index will be changed to [start:end]. This
405
        // should only be read after indexToDelete index has been deleted.
406
        indexToEdit *int
407
}
408

UNCOV
409
// kvChanges encompasses the diff to apply to a KV-store representation of a
×
UNCOV
410
// range index. A kv-store diff for the addition of a single number to the range
×
UNCOV
411
// index will include either a brand new key-value pair or the altering of the
×
UNCOV
412
// value of an existing key. Optionally, the diff may also include the deletion
×
UNCOV
413
// of an existing key. A deletion will be required if the addition of the new
×
UNCOV
414
// number results in the merge of two ranges.
×
UNCOV
415
type kvChanges struct {
×
UNCOV
416
        key   uint64
×
UNCOV
417
        value uint64
×
UNCOV
418

×
UNCOV
419
        // deleteKVKey, if set, is the key of the kv store representation that
×
UNCOV
420
        // should be deleted.
×
UNCOV
421
        deleteKVKey *uint64
×
UNCOV
422
}
×
UNCOV
423

×
UNCOV
424
// getChanges will calculate and return the changes that need to be applied to
×
UNCOV
425
// both the sorted-rangeItem-array representation and the key-value store
×
UNCOV
426
// representation of the range index.
×
UNCOV
427
func (a *RangeIndex) getChanges(n uint64) (*arrayChanges, *kvChanges) {
×
UNCOV
428
        // If the set is empty then a new range item is added.
×
429
        if len(a.set) == 0 {
430
                // For the array representation, a new range [n:n] is added to
UNCOV
431
                // the first index of the array.
×
UNCOV
432
                firstIndex := 0
×
UNCOV
433
                ac := &arrayChanges{
×
434
                        newIndex: &firstIndex,
435
                        start:    n,
436
                        end:      n,
×
437
                }
×
438

439
                // For the KV representation, a new [n:n] pair is added.
440
                kvc := &kvChanges{
×
441
                        key:   n,
×
442
                        value: n,
×
443
                }
×
444

×
445
                return ac, kvc
×
446
        }
×
447

×
448
        // Find the index of the lower bound range to the new number.
×
449
        indexOfRangeBelow, alreadyCovered := a.lowerBoundIndex(n)
×
450

×
451
        switch {
×
452
        // The new number is already covered by the range index. No changes are
×
453
        // required.
×
454
        case alreadyCovered:
×
455
                return nil, nil
×
456

×
457
        // No lower bound index exists.
×
458
        case indexOfRangeBelow < 0:
×
459
                // Check if the very first range can be merged into this new
×
460
                // one.
×
461
                if n+1 == a.set[0].start {
×
462
                        // If so, the two ranges can be merged and so the start
×
463
                        // value of the range is n and the end value is the end
×
464
                        // of the existing first range.
×
465
                        start := n
×
466
                        end := a.set[0].end
×
467

×
468
                        // For the array representation, we can just edit the
×
469
                        // first entry of the array
×
470
                        editIndex := 0
×
471
                        ac := &arrayChanges{
472
                                indexToEdit: &editIndex,
473
                                start:       start,
474
                                end:         end,
475
                        }
476

×
477
                        // For the KV store representation, we add a new kv pair
×
478
                        // and delete the range with the key equal to the start
×
479
                        // value of the range we are merging.
×
480
                        kvKeyToDelete := a.set[0].start
×
481
                        kvc := &kvChanges{
×
482
                                key:         start,
×
483
                                value:       end,
×
484
                                deleteKVKey: &kvKeyToDelete,
×
485
                        }
×
486

×
487
                        return ac, kvc
×
488
                }
×
489

×
490
                // Otherwise, we add a new index.
491

492
                // For the array representation, a new range [n:n] is added to
UNCOV
493
                // the first index of the array.
×
UNCOV
494
                newIndex := 0
×
UNCOV
495
                ac := &arrayChanges{
×
UNCOV
496
                        newIndex: &newIndex,
×
UNCOV
497
                        start:    n,
×
UNCOV
498
                        end:      n,
×
UNCOV
499
                }
×
UNCOV
500

×
UNCOV
501
                // For the KV representation, a new [n:n] pair is added.
×
UNCOV
502
                kvc := &kvChanges{
×
UNCOV
503
                        key:   n,
×
UNCOV
504
                        value: n,
×
UNCOV
505
                }
×
UNCOV
506

×
UNCOV
507
                return ac, kvc
×
UNCOV
508

×
UNCOV
509
        // A lower range does exist, and it can be extended to include this new
×
UNCOV
510
        // number.
×
UNCOV
511
        case a.set[indexOfRangeBelow].end+1 == n:
×
UNCOV
512
                start := a.set[indexOfRangeBelow].start
×
UNCOV
513
                end := n
×
UNCOV
514
                indexToChange := indexOfRangeBelow
×
UNCOV
515

×
UNCOV
516
                // If there are no intervals above this one or if there are, but
×
UNCOV
517
                // they can't be merged into this one then we just need to edit
×
UNCOV
518
                // this interval.
×
UNCOV
519
                if indexOfRangeBelow == len(a.set)-1 ||
×
520
                        a.set[indexOfRangeBelow+1].start != n+1 {
521

522
                        // For the array representation, we just edit the index.
523
                        ac := &arrayChanges{
×
524
                                indexToEdit: &indexToChange,
×
525
                                start:       start,
×
526
                                end:         end,
×
527
                        }
×
528

×
529
                        // For the key-value representation, we just overwrite
×
530
                        // the end value at the existing start key.
×
531
                        kvc := &kvChanges{
×
532
                                key:   start,
×
533
                                value: end,
×
534
                        }
×
535

×
536
                        return ac, kvc
×
537
                }
×
538

×
539
                // There is a range above this one that we need to merge into
×
540
                // this one.
×
541
                delIndex := indexOfRangeBelow + 1
×
542
                end = a.set[delIndex].end
×
543

×
544
                // For the array representation, we delete the range above this
×
545
                // one and edit this range to include the end value of the range
×
546
                // above.
547
                ac := &arrayChanges{
548
                        indexToDelete: &delIndex,
549
                        indexToEdit:   &indexToChange,
UNCOV
550
                        start:         start,
×
UNCOV
551
                        end:           end,
×
UNCOV
552
                }
×
UNCOV
553

×
UNCOV
554
                // For the kv representation, we tweak the end value of an
×
UNCOV
555
                // existing key and delete the key of the range we are deleting.
×
UNCOV
556
                deleteKey := a.set[delIndex].start
×
UNCOV
557
                kvc := &kvChanges{
×
UNCOV
558
                        key:         start,
×
UNCOV
559
                        value:       end,
×
UNCOV
560
                        deleteKVKey: &deleteKey,
×
UNCOV
561
                }
×
UNCOV
562

×
UNCOV
563
                return ac, kvc
×
UNCOV
564

×
UNCOV
565
        // A lower range does exist, but it can't be extended to include this
×
UNCOV
566
        // new number, and so we need to add a new range after the lower bound
×
UNCOV
567
        // range.
×
UNCOV
568
        default:
×
UNCOV
569
                newIndex := indexOfRangeBelow + 1
×
570

571
                // If there are no ranges above this new one or if there are,
572
                // but they can't be merged into this new one, then we can just
×
573
                // add the new one as is.
×
574
                if newIndex == len(a.set) || a.set[newIndex].start != n+1 {
×
575
                        ac := &arrayChanges{
×
576
                                newIndex: &newIndex,
×
577
                                start:    n,
×
578
                                end:      n,
×
579
                        }
×
580

×
581
                        kvc := &kvChanges{
×
582
                                key:   n,
×
583
                                value: n,
×
584
                        }
×
585

×
586
                        return ac, kvc
×
587
                }
×
588

×
589
                // Else, we merge the above index.
×
590
                start := n
×
591
                end := a.set[newIndex].end
×
592
                toEdit := newIndex
×
593

×
594
                // For the array representation, we edit the range above to
595
                // include the new start value.
596
                ac := &arrayChanges{
597
                        indexToEdit: &toEdit,
×
598
                        start:       start,
×
599
                        end:         end,
×
600
                }
×
601

×
602
                // For the kv representation, we insert the new start-end key
603
                // value pair and delete the key using the old start value.
604
                delKey := a.set[newIndex].start
605
                kvc := &kvChanges{
606
                        key:         start,
607
                        value:       end,
608
                        deleteKVKey: &delKey,
609
                }
610

611
                return ac, kvc
612
        }
613
}
614

615
func defaultSerializeUint64(i uint64) ([]byte, error) {
616
        var b [8]byte
617
        byteOrder.PutUint64(b[:], i)
618
        return b[:], nil
619
}
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc