• Home
  • Features
  • Pricing
  • Docs
  • Announcements
  • Sign In

lightningnetwork / lnd / 15951470896

29 Jun 2025 04:23AM UTC coverage: 67.594% (-0.01%) from 67.606%
15951470896

Pull #9751

github

web-flow
Merge 599d9b051 into 6290edf14
Pull Request #9751: multi: update Go to 1.23.10 and update some packages

135088 of 199851 relevant lines covered (67.59%)

21909.44 hits per line

Source File
Press 'n' to go to next uncovered line, 'b' for previous

89.01
/routing/blindedpath/blinded_path.go
1
package blindedpath
2

3
import (
4
        "bytes"
5
        "errors"
6
        "fmt"
7
        "math"
8
        "sort"
9

10
        "github.com/btcsuite/btcd/btcec/v2"
11
        "github.com/btcsuite/btcd/btcutil"
12
        sphinx "github.com/lightningnetwork/lightning-onion"
13
        "github.com/lightningnetwork/lnd/channeldb"
14
        "github.com/lightningnetwork/lnd/graph/db/models"
15
        "github.com/lightningnetwork/lnd/lnwire"
16
        "github.com/lightningnetwork/lnd/record"
17
        "github.com/lightningnetwork/lnd/routing/route"
18
        "github.com/lightningnetwork/lnd/tlv"
19
        "github.com/lightningnetwork/lnd/zpay32"
20
)
21

22
const (
23
        // oneMillion is a constant used frequently in fee rate calculations.
24
        oneMillion = uint32(1_000_000)
25
)
26

27
// errInvalidBlindedPath indicates that the chosen real path is not usable as
28
// a blinded path.
29
var errInvalidBlindedPath = errors.New("the chosen path results in an " +
30
        "unusable blinded path")
31

32
// BuildBlindedPathCfg defines the various resources and configuration values
33
// required to build a blinded payment path to this node.
34
type BuildBlindedPathCfg struct {
35
        // FindRoutes returns a set of routes to us that can be used for the
36
        // construction of blinded paths. These routes will consist of real
37
        // nodes advertising the route blinding feature bit. They may be of
38
        // various lengths and may even contain only a single hop. Any route
39
        // shorter than MinNumHops will be padded with dummy hops during route
40
        // construction.
41
        FindRoutes func(value lnwire.MilliSatoshi) ([]*route.Route, error)
42

43
        // FetchChannelEdgesByID attempts to look up the two directed edges for
44
        // the channel identified by the channel ID.
45
        FetchChannelEdgesByID func(chanID uint64) (*models.ChannelEdgeInfo,
46
                *models.ChannelEdgePolicy, *models.ChannelEdgePolicy, error)
47

48
        // FetchOurOpenChannels fetches this node's set of open channels.
49
        FetchOurOpenChannels func() ([]*channeldb.OpenChannel, error)
50

51
        // BestHeight can be used to fetch the best block height that this node
52
        // is aware of.
53
        BestHeight func() (uint32, error)
54

55
        // AddPolicyBuffer is a function that can be used to alter the policy
56
        // values of the given channel edge. The main reason for doing this is
57
        // to add a safety buffer so that if the node makes small policy changes
58
        // during the lifetime of the blinded path, then the path remains valid
59
        // and so probing is more difficult. Note that this will only be called
60
        // for the policies of real nodes and won't be applied to
61
        // DefaultDummyHopPolicy.
62
        AddPolicyBuffer func(policy *BlindedHopPolicy) (*BlindedHopPolicy,
63
                error)
64

65
        // PathID is the secret data to embed in the blinded path data that we
66
        // will receive back as the recipient. This is the equivalent of the
67
        // payment address used in normal payments. It lets the recipient check
68
        // that the path is being used in the correct context.
69
        PathID []byte
70

71
        // ValueMsat is the payment amount in milli-satoshis that must be
72
        // routed. This will be used for selecting appropriate routes to use for
73
        // the blinded path.
74
        ValueMsat lnwire.MilliSatoshi
75

76
        // MinFinalCLTVExpiryDelta is the minimum CLTV delta that the recipient
77
        // requires for the final hop of the payment.
78
        //
79
        // NOTE that the caller is responsible for adding additional block
80
        // padding to this value to account for blocks being mined while the
81
        // payment is in-flight.
82
        MinFinalCLTVExpiryDelta uint32
83

84
        // BlocksUntilExpiry is the number of blocks that this blinded path
85
        // should remain valid for. This is a relative number of blocks. This
86
        // number in addition with a potential minimum cltv delta for the last
87
        // hop and some block padding will be the payment constraint which is
88
        // part of the blinded hop info. Every htlc using the provided blinded
89
        // hops cannot have a higher cltv delta otherwise it will get rejected
90
        // by the forwarding nodes or the final node.
91
        //
92
        // This number should at least be greater than the invoice expiry time
93
        // so that the blinded route is always valid as long as the invoice is
94
        // valid.
95
        BlocksUntilExpiry uint32
96

97
        // MinNumHops is the minimum number of hops that each blinded path
98
        // should be. If the number of hops in a path returned by FindRoutes is
99
        // less than this number, then dummy hops will be post-fixed to the
100
        // route.
101
        MinNumHops uint8
102

103
        // DefaultDummyHopPolicy holds the policy values that should be used for
104
        // dummy hops in the cases where it cannot be derived via other means
105
        // such as averaging the policy values of other hops on the path. This
106
        // would happen in the case where the introduction node is also the
107
        // introduction node. If these default policy values are used, then
108
        // the MaxHTLCMsat value must be carefully chosen.
109
        DefaultDummyHopPolicy *BlindedHopPolicy
110
}
111

112
// BuildBlindedPaymentPaths uses the passed config to construct a set of blinded
113
// payment paths that can be added to the invoice.
114
func BuildBlindedPaymentPaths(cfg *BuildBlindedPathCfg) (
115
        []*zpay32.BlindedPaymentPath, error) {
7✔
116

7✔
117
        // Find some appropriate routes for the value to be routed. This will
7✔
118
        // return a set of routes made up of real nodes.
7✔
119
        routes, err := cfg.FindRoutes(cfg.ValueMsat)
7✔
120
        if err != nil {
10✔
121
                return nil, err
3✔
122
        }
3✔
123

124
        if len(routes) == 0 {
7✔
125
                return nil, fmt.Errorf("could not find any routes to self to " +
×
126
                        "use for blinded route construction")
×
127
        }
×
128

129
        // Not every route returned will necessarily result in a usable blinded
130
        // path and so the number of paths returned might be less than the
131
        // number of real routes returned by FindRoutes above.
132
        paths := make([]*zpay32.BlindedPaymentPath, 0, len(routes))
7✔
133

7✔
134
        // For each route returned, we will construct the associated blinded
7✔
135
        // payment path.
7✔
136
        for _, route := range routes {
16✔
137
                // Extract the information we need from the route.
9✔
138
                candidatePath := extractCandidatePath(route)
9✔
139

9✔
140
                // Pad the given route with dummy hops until the minimum number
9✔
141
                // of hops is met.
9✔
142
                candidatePath.padWithDummyHops(cfg.MinNumHops)
9✔
143

9✔
144
                path, err := buildBlindedPaymentPath(cfg, candidatePath)
9✔
145
                if errors.Is(err, errInvalidBlindedPath) {
9✔
146
                        log.Debugf("Not using route (%s) as a blinded path "+
×
147
                                "since it resulted in an invalid blinded path",
×
148
                                route)
×
149

×
150
                        continue
×
151
                } else if err != nil {
11✔
152
                        log.Errorf("Not using route (%s) as a blinded path: %v",
2✔
153
                                route, err)
2✔
154

2✔
155
                        continue
2✔
156
                }
157

158
                log.Debugf("Route selected for blinded path: %s", candidatePath)
7✔
159

7✔
160
                paths = append(paths, path)
7✔
161
        }
162

163
        if len(paths) == 0 {
7✔
164
                return nil, fmt.Errorf("could not build any blinded paths")
×
165
        }
×
166

167
        return paths, nil
7✔
168
}
169

170
// buildBlindedPaymentPath takes a route from an introduction node to this node
171
// and uses the given config to convert it into a blinded payment path.
172
func buildBlindedPaymentPath(cfg *BuildBlindedPathCfg, path *candidatePath) (
173
        *zpay32.BlindedPaymentPath, error) {
9✔
174

9✔
175
        hops, minHTLC, maxHTLC, err := collectRelayInfo(cfg, path)
9✔
176
        if err != nil {
11✔
177
                return nil, fmt.Errorf("could not collect blinded path relay "+
2✔
178
                        "info: %w", err)
2✔
179
        }
2✔
180

181
        relayInfo := make([]*record.PaymentRelayInfo, len(hops))
7✔
182
        for i, hop := range hops {
20✔
183
                relayInfo[i] = hop.relayInfo
13✔
184
        }
13✔
185

186
        // Using the collected relay info, we can calculate the aggregated
187
        // policy values for the route.
188
        baseFee, feeRate, cltvDelta := calcBlindedPathPolicies(
7✔
189
                relayInfo, uint16(cfg.MinFinalCLTVExpiryDelta),
7✔
190
        )
7✔
191

7✔
192
        currentHeight, err := cfg.BestHeight()
7✔
193
        if err != nil {
7✔
194
                return nil, err
×
195
        }
×
196

197
        // The next step is to calculate the payment constraints to communicate
198
        // to each hop and to package up the hop info for each hop. We will
199
        // handle the final hop first since its payload looks a bit different,
200
        // and then we will iterate backwards through the remaining hops.
201
        //
202
        // Note that the +1 here is required because the route won't have the
203
        // introduction node included in the "Hops". But since we want to create
204
        // payloads for all the hops as well as the introduction node, we add 1
205
        // here to get the full hop length along with the introduction node.
206
        hopDataSet := make([]*hopData, 0, len(path.hops)+1)
7✔
207

7✔
208
        // Determine the maximum CLTV expiry for the destination node.
7✔
209
        cltvExpiry := currentHeight + cfg.BlocksUntilExpiry +
7✔
210
                cfg.MinFinalCLTVExpiryDelta
7✔
211

7✔
212
        constraints := &record.PaymentConstraints{
7✔
213
                MaxCltvExpiry:   cltvExpiry,
7✔
214
                HtlcMinimumMsat: minHTLC,
7✔
215
        }
7✔
216

7✔
217
        // If the blinded route has only a source node (introduction node) and
7✔
218
        // no hops, then the destination node is also the source node.
7✔
219
        finalHopPubKey := path.introNode
7✔
220
        if len(path.hops) > 0 {
13✔
221
                finalHopPubKey = path.hops[len(path.hops)-1].pubKey
6✔
222
        }
6✔
223

224
        // For the final hop, we only send it the path ID and payment
225
        // constraints.
226
        info, err := buildFinalHopRouteData(
7✔
227
                finalHopPubKey, cfg.PathID, constraints,
7✔
228
        )
7✔
229
        if err != nil {
7✔
230
                return nil, err
×
231
        }
×
232

233
        hopDataSet = append(hopDataSet, info)
7✔
234

7✔
235
        // Iterate through the remaining (non-final) hops, back to front.
7✔
236
        for i := len(hops) - 1; i >= 0; i-- {
20✔
237
                hop := hops[i]
13✔
238

13✔
239
                cltvExpiry += uint32(hop.relayInfo.CltvExpiryDelta)
13✔
240

13✔
241
                constraints = &record.PaymentConstraints{
13✔
242
                        MaxCltvExpiry:   cltvExpiry,
13✔
243
                        HtlcMinimumMsat: minHTLC,
13✔
244
                }
13✔
245

13✔
246
                var info *hopData
13✔
247
                if hop.nextHopIsDummy {
20✔
248
                        info, err = buildDummyRouteData(
7✔
249
                                hop.hopPubKey, hop.relayInfo, constraints,
7✔
250
                        )
7✔
251
                } else {
16✔
252
                        info, err = buildHopRouteData(
9✔
253
                                hop.hopPubKey, hop.nextSCID, hop.relayInfo,
9✔
254
                                constraints,
9✔
255
                        )
9✔
256
                }
9✔
257
                if err != nil {
13✔
258
                        return nil, err
×
259
                }
×
260

261
                hopDataSet = append(hopDataSet, info)
13✔
262
        }
263

264
        // Sort the hop info list in reverse order so that the data for the
265
        // introduction node is first.
266
        sort.Slice(hopDataSet, func(i, j int) bool {
33✔
267
                return j < i
26✔
268
        })
26✔
269

270
        // Add padding to each route data instance until the encrypted data
271
        // blobs are all the same size.
272
        paymentPath, _, err := padHopInfo(
7✔
273
                hopDataSet, true, record.AverageDummyHopPayloadSize,
7✔
274
        )
7✔
275
        if err != nil {
7✔
276
                return nil, err
×
277
        }
×
278

279
        // Derive an ephemeral session key.
280
        sessionKey, err := btcec.NewPrivateKey()
7✔
281
        if err != nil {
7✔
282
                return nil, err
×
283
        }
×
284

285
        // Encrypt the hop info.
286
        blindedPathInfo, err := sphinx.BuildBlindedPath(sessionKey, paymentPath)
7✔
287
        if err != nil {
7✔
288
                return nil, err
×
289
        }
×
290
        blindedPath := blindedPathInfo.Path
7✔
291

7✔
292
        if len(blindedPath.BlindedHops) < 1 {
7✔
293
                return nil, fmt.Errorf("blinded path must have at least one " +
×
294
                        "hop")
×
295
        }
×
296

297
        // Overwrite the introduction point's blinded pub key with the real
298
        // pub key since then we can use this more compact format in the
299
        // invoice without needing to encode the un-used blinded node pub key of
300
        // the intro node.
301
        blindedPath.BlindedHops[0].BlindedNodePub =
7✔
302
                blindedPath.IntroductionPoint
7✔
303

7✔
304
        // Now construct a z32 blinded path.
7✔
305
        return &zpay32.BlindedPaymentPath{
7✔
306
                FeeBaseMsat:                 uint32(baseFee),
7✔
307
                FeeRate:                     feeRate,
7✔
308
                CltvExpiryDelta:             cltvDelta,
7✔
309
                HTLCMinMsat:                 uint64(minHTLC),
7✔
310
                HTLCMaxMsat:                 uint64(maxHTLC),
7✔
311
                Features:                    lnwire.EmptyFeatureVector(),
7✔
312
                FirstEphemeralBlindingPoint: blindedPath.BlindingPoint,
7✔
313
                Hops:                        blindedPath.BlindedHops,
7✔
314
        }, nil
7✔
315
}
316

317
// hopRelayInfo packages together the relay info to send to hop on a blinded
318
// path along with the pub key of that hop and the SCID that the hop should
319
// forward the payment on to.
320
type hopRelayInfo struct {
321
        hopPubKey      route.Vertex
322
        nextSCID       lnwire.ShortChannelID
323
        relayInfo      *record.PaymentRelayInfo
324
        nextHopIsDummy bool
325
}
326

327
// collectRelayInfo collects the relay policy rules for each relay hop on the
328
// route and applies any policy buffers.
329
//
330
// For the blinded route:
331
//
332
//        C --chan(CB)--> B --chan(BA)--> A
333
//
334
// where C is the introduction node, the route.Route struct we are given will
335
// have SourcePubKey set to C's pub key, and then it will have the following
336
// route.Hops:
337
//
338
//   - PubKeyBytes: B, ChannelID: chan(CB)
339
//   - PubKeyBytes: A, ChannelID: chan(BA)
340
//
341
// We, however, want to collect the channel policies for the following PubKey
342
// and ChannelID pairs:
343
//
344
//   - PubKey: C, ChannelID: chan(CB)
345
//   - PubKey: B, ChannelID: chan(BA)
346
//
347
// Therefore, when we go through the route and its hops to collect policies, our
348
// index for collecting public keys will be trailing that of the channel IDs by
349
// 1.
350
//
351
// For any dummy hops on the route, this function also decides what to use as
352
// policy values for the dummy hops. If there are other real hops, then the
353
// dummy hop policy values are derived by taking the average of the real
354
// policy values. If there are no real hops (in other words we are the
355
// introduction node), then we use some default routing values and we use the
356
// average of our channel capacities for the MaxHTLC value.
357
func collectRelayInfo(cfg *BuildBlindedPathCfg, path *candidatePath) (
358
        []*hopRelayInfo, lnwire.MilliSatoshi, lnwire.MilliSatoshi, error) {
9✔
359

9✔
360
        var (
9✔
361
                // The first pub key is that of the introduction node.
9✔
362
                hopSource = path.introNode
9✔
363

9✔
364
                // A collection of the policy values of real hops on the path.
9✔
365
                policies = make(map[uint64]*BlindedHopPolicy)
9✔
366

9✔
367
                hasDummyHops bool
9✔
368
        )
9✔
369

9✔
370
        // On this first iteration, we just collect policy values of the real
9✔
371
        // hops on the path.
9✔
372
        for _, hop := range path.hops {
22✔
373
                // Once we have hit a dummy hop, all hops after will be dummy
13✔
374
                // hops too.
13✔
375
                if hop.isDummy {
18✔
376
                        hasDummyHops = true
5✔
377

5✔
378
                        break
5✔
379
                }
380

381
                // For real hops, retrieve the channel policy for this hop's
382
                // channel ID in the direction pointing away from the hopSource
383
                // node.
384
                policy, err := getNodeChannelPolicy(
11✔
385
                        cfg, hop.channelID, hopSource,
11✔
386
                )
11✔
387
                if err != nil {
13✔
388
                        return nil, 0, 0, err
2✔
389
                }
2✔
390

391
                policies[hop.channelID] = policy
9✔
392

9✔
393
                // This hop's pub key will be the policy creator for the next
9✔
394
                // hop.
9✔
395
                hopSource = hop.pubKey
9✔
396
        }
397

398
        var (
7✔
399
                dummyHopPolicy *BlindedHopPolicy
7✔
400
                err            error
7✔
401
        )
7✔
402

7✔
403
        // If the path does have dummy hops, we need to decide which policy
7✔
404
        // values to use for these hops.
7✔
405
        if hasDummyHops {
12✔
406
                dummyHopPolicy, err = computeDummyHopPolicy(
5✔
407
                        cfg.DefaultDummyHopPolicy, cfg.FetchOurOpenChannels,
5✔
408
                        policies,
5✔
409
                )
5✔
410
                if err != nil {
5✔
411
                        return nil, 0, 0, err
×
412
                }
×
413
        }
414

415
        // We iterate through the hops one more time. This time it is to
416
        // buffer the policy values, collect the payment relay info to send to
417
        // each hop, and to compute the min and max HTLC values for the path.
418
        var (
7✔
419
                hops    = make([]*hopRelayInfo, 0, len(path.hops))
7✔
420
                minHTLC lnwire.MilliSatoshi
7✔
421
                maxHTLC lnwire.MilliSatoshi
7✔
422
        )
7✔
423
        // The first pub key is that of the introduction node.
7✔
424
        hopSource = path.introNode
7✔
425
        for _, hop := range path.hops {
20✔
426
                var (
13✔
427
                        policy = dummyHopPolicy
13✔
428
                        ok     bool
13✔
429
                        err    error
13✔
430
                )
13✔
431

13✔
432
                if !hop.isDummy {
22✔
433
                        policy, ok = policies[hop.channelID]
9✔
434
                        if !ok {
9✔
435
                                return nil, 0, 0, fmt.Errorf("no cached "+
×
436
                                        "policy found for channel ID: %d",
×
437
                                        hop.channelID)
×
438
                        }
×
439
                }
440

441
                if policy.MinHTLCMsat > cfg.ValueMsat {
13✔
442
                        return nil, 0, 0, fmt.Errorf("%w: minHTLC of hop "+
×
443
                                "policy larger than payment amt: sentAmt(%v), "+
×
444
                                "minHTLC(%v)", errInvalidBlindedPath,
×
445
                                cfg.ValueMsat, policy.MinHTLCMsat)
×
446
                }
×
447

448
                bufferPolicy, err := cfg.AddPolicyBuffer(policy)
13✔
449
                if err != nil {
13✔
450
                        return nil, 0, 0, err
×
451
                }
×
452

453
                // We only use the new buffered policy if the new minHTLC value
454
                // does not violate the sender amount.
455
                //
456
                // NOTE: We don't check this for maxHTLC, because the payment
457
                // amount can always be splitted using MPP.
458
                if bufferPolicy.MinHTLCMsat <= cfg.ValueMsat {
26✔
459
                        policy = bufferPolicy
13✔
460
                }
13✔
461

462
                // If this is the first policy we are collecting, then use this
463
                // policy to set the base values for min/max htlc.
464
                if len(hops) == 0 {
19✔
465
                        minHTLC = policy.MinHTLCMsat
6✔
466
                        maxHTLC = policy.MaxHTLCMsat
6✔
467
                } else {
16✔
468
                        if policy.MinHTLCMsat > minHTLC {
10✔
469
                                minHTLC = policy.MinHTLCMsat
×
470
                        }
×
471

472
                        if policy.MaxHTLCMsat < maxHTLC {
10✔
473
                                maxHTLC = policy.MaxHTLCMsat
×
474
                        }
×
475
                }
476

477
                // From the policy values for this hop, we can collect the
478
                // payment relay info that we will send to this hop.
479
                hops = append(hops, &hopRelayInfo{
13✔
480
                        hopPubKey: hopSource,
13✔
481
                        nextSCID:  lnwire.NewShortChanIDFromInt(hop.channelID),
13✔
482
                        relayInfo: &record.PaymentRelayInfo{
13✔
483
                                FeeRate:         policy.FeeRate,
13✔
484
                                BaseFee:         policy.BaseFee,
13✔
485
                                CltvExpiryDelta: policy.CLTVExpiryDelta,
13✔
486
                        },
13✔
487
                        nextHopIsDummy: hop.isDummy,
13✔
488
                })
13✔
489

13✔
490
                // This hop's pub key will be the policy creator for the next
13✔
491
                // hop.
13✔
492
                hopSource = hop.pubKey
13✔
493
        }
494

495
        // It can happen that there is no HTLC-range overlap between the various
496
        // hops along the path. We return errInvalidBlindedPath to indicate that
497
        // this route was not usable
498
        if minHTLC > maxHTLC {
7✔
499
                return nil, 0, 0, fmt.Errorf("%w: resulting blinded path min "+
×
500
                        "HTLC value is larger than the resulting max HTLC "+
×
501
                        "value", errInvalidBlindedPath)
×
502
        }
×
503

504
        return hops, minHTLC, maxHTLC, nil
7✔
505
}
506

507
// buildDummyRouteData constructs the record.BlindedRouteData struct for the
508
// given a hop in a blinded route where the following hop is a dummy hop.
509
func buildDummyRouteData(node route.Vertex, relayInfo *record.PaymentRelayInfo,
510
        constraints *record.PaymentConstraints) (*hopData, error) {
7✔
511

7✔
512
        nodeID, err := btcec.ParsePubKey(node[:])
7✔
513
        if err != nil {
7✔
514
                return nil, err
×
515
        }
×
516

517
        return &hopData{
7✔
518
                data: record.NewDummyHopRouteData(
7✔
519
                        nodeID, *relayInfo, *constraints,
7✔
520
                ),
7✔
521
                nodeID: nodeID,
7✔
522
        }, nil
7✔
523
}
524

525
// computeDummyHopPolicy determines policy values to use for a dummy hop on a
526
// blinded path. If other real policy values exist, then we use the average of
527
// those values for the dummy hop policy values. Otherwise, in the case were
528
// there are no real policy values due to this node being the introduction node,
529
// we use the provided default policy values, and we get the average capacity of
530
// this node's channels to compute a MaxHTLC value.
531
func computeDummyHopPolicy(defaultPolicy *BlindedHopPolicy,
532
        fetchOurChannels func() ([]*channeldb.OpenChannel, error),
533
        policies map[uint64]*BlindedHopPolicy) (*BlindedHopPolicy, error) {
5✔
534

5✔
535
        numPolicies := len(policies)
5✔
536

5✔
537
        // If there are no real policies to calculate an average policy from,
5✔
538
        // then we use the default. The only thing we need to calculate here
5✔
539
        // though is the MaxHTLC value.
5✔
540
        if numPolicies == 0 {
8✔
541
                chans, err := fetchOurChannels()
3✔
542
                if err != nil {
3✔
543
                        return nil, err
×
544
                }
×
545

546
                if len(chans) == 0 {
3✔
547
                        return nil, fmt.Errorf("node has no channels to " +
×
548
                                "receive on")
×
549
                }
×
550

551
                // Calculate the average channel capacity and use this as the
552
                // MaxHTLC value.
553
                var maxHTLC btcutil.Amount
3✔
554
                for _, c := range chans {
6✔
555
                        maxHTLC += c.Capacity
3✔
556
                }
3✔
557

558
                maxHTLC = btcutil.Amount(float64(maxHTLC) / float64(len(chans)))
3✔
559

3✔
560
                return &BlindedHopPolicy{
3✔
561
                        CLTVExpiryDelta: defaultPolicy.CLTVExpiryDelta,
3✔
562
                        FeeRate:         defaultPolicy.FeeRate,
3✔
563
                        BaseFee:         defaultPolicy.BaseFee,
3✔
564
                        MinHTLCMsat:     defaultPolicy.MinHTLCMsat,
3✔
565
                        MaxHTLCMsat:     lnwire.NewMSatFromSatoshis(maxHTLC),
3✔
566
                }, nil
3✔
567
        }
568

569
        var avgPolicy BlindedHopPolicy
5✔
570

5✔
571
        for _, policy := range policies {
12✔
572
                avgPolicy.MinHTLCMsat += policy.MinHTLCMsat
7✔
573
                avgPolicy.MaxHTLCMsat += policy.MaxHTLCMsat
7✔
574
                avgPolicy.BaseFee += policy.BaseFee
7✔
575
                avgPolicy.FeeRate += policy.FeeRate
7✔
576
                avgPolicy.CLTVExpiryDelta += policy.CLTVExpiryDelta
7✔
577
        }
7✔
578

579
        avgPolicy.MinHTLCMsat = lnwire.MilliSatoshi(
5✔
580
                float64(avgPolicy.MinHTLCMsat) / float64(numPolicies),
5✔
581
        )
5✔
582
        avgPolicy.MaxHTLCMsat = lnwire.MilliSatoshi(
5✔
583
                float64(avgPolicy.MaxHTLCMsat) / float64(numPolicies),
5✔
584
        )
5✔
585
        avgPolicy.BaseFee = lnwire.MilliSatoshi(
5✔
586
                float64(avgPolicy.BaseFee) / float64(numPolicies),
5✔
587
        )
5✔
588
        avgPolicy.FeeRate = uint32(
5✔
589
                float64(avgPolicy.FeeRate) / float64(numPolicies),
5✔
590
        )
5✔
591
        avgPolicy.CLTVExpiryDelta = uint16(
5✔
592
                float64(avgPolicy.CLTVExpiryDelta) / float64(numPolicies),
5✔
593
        )
5✔
594

5✔
595
        return &avgPolicy, nil
5✔
596
}
597

598
// buildHopRouteData constructs the record.BlindedRouteData struct for the given
599
// non-final hop on a blinded path and packages it with the node's ID.
600
func buildHopRouteData(node route.Vertex, scid lnwire.ShortChannelID,
601
        relayInfo *record.PaymentRelayInfo,
602
        constraints *record.PaymentConstraints) (*hopData, error) {
9✔
603

9✔
604
        // Wrap up the data we want to send to this hop.
9✔
605
        blindedRouteHopData := record.NewNonFinalBlindedRouteData(
9✔
606
                scid, nil, *relayInfo, constraints, nil,
9✔
607
        )
9✔
608

9✔
609
        nodeID, err := btcec.ParsePubKey(node[:])
9✔
610
        if err != nil {
9✔
611
                return nil, err
×
612
        }
×
613

614
        return &hopData{
9✔
615
                data:   blindedRouteHopData,
9✔
616
                nodeID: nodeID,
9✔
617
        }, nil
9✔
618
}
619

620
// buildFinalHopRouteData constructs the record.BlindedRouteData struct for the
621
// final hop and packages it with the real node ID of the node it is intended
622
// for.
623
func buildFinalHopRouteData(node route.Vertex, pathID []byte,
624
        constraints *record.PaymentConstraints) (*hopData, error) {
7✔
625

7✔
626
        blindedRouteHopData := record.NewFinalHopBlindedRouteData(
7✔
627
                constraints, pathID,
7✔
628
        )
7✔
629
        nodeID, err := btcec.ParsePubKey(node[:])
7✔
630
        if err != nil {
7✔
631
                return nil, err
×
632
        }
×
633

634
        return &hopData{
7✔
635
                data:   blindedRouteHopData,
7✔
636
                nodeID: nodeID,
7✔
637
        }, nil
7✔
638
}
639

640
// getNodeChanPolicy fetches the routing policy info for the given channel and
641
// node pair.
642
func getNodeChannelPolicy(cfg *BuildBlindedPathCfg, chanID uint64,
643
        nodeID route.Vertex) (*BlindedHopPolicy, error) {
11✔
644

11✔
645
        // Attempt to fetch channel updates for the given channel. We will have
11✔
646
        // at most two updates for a given channel.
11✔
647
        _, update1, update2, err := cfg.FetchChannelEdgesByID(chanID)
11✔
648
        if err != nil {
13✔
649
                return nil, err
2✔
650
        }
2✔
651

652
        // Now we need to determine which of the updates was created by the
653
        // node in question. We know the update is the correct one if the
654
        // "ToNode" for the fetched policy is _not_ equal to the node ID in
655
        // question.
656
        var policy *models.ChannelEdgePolicy
9✔
657
        switch {
9✔
658
        case update1 != nil && !bytes.Equal(update1.ToNode[:], nodeID[:]):
9✔
659
                policy = update1
9✔
660

661
        case update2 != nil && !bytes.Equal(update2.ToNode[:], nodeID[:]):
3✔
662
                policy = update2
3✔
663

664
        default:
×
665
                return nil, fmt.Errorf("no channel updates found from node "+
×
666
                        "%s for channel %d", nodeID, chanID)
×
667
        }
668

669
        return &BlindedHopPolicy{
9✔
670
                CLTVExpiryDelta: policy.TimeLockDelta,
9✔
671
                FeeRate:         uint32(policy.FeeProportionalMillionths),
9✔
672
                BaseFee:         policy.FeeBaseMSat,
9✔
673
                MinHTLCMsat:     policy.MinHTLC,
9✔
674
                MaxHTLCMsat:     policy.MaxHTLC,
9✔
675
        }, nil
9✔
676
}
677

678
// candidatePath holds all the information about a route to this node that we
679
// need in order to build a blinded route.
680
type candidatePath struct {
681
        introNode   route.Vertex
682
        finalNodeID route.Vertex
683
        hops        []*blindedPathHop
684
}
685

686
// String returns a string representation of the candidatePath which can be
687
// useful for logging and debugging.
688
func (c *candidatePath) String() string {
3✔
689
        str := fmt.Sprintf("[%s (intro node)]", c.introNode)
3✔
690

3✔
691
        for _, hop := range c.hops {
6✔
692
                if hop.isDummy {
6✔
693
                        str += "--->[dummy hop]"
3✔
694
                        continue
3✔
695
                }
696

697
                str += fmt.Sprintf("--<%d>-->[%s]", hop.channelID, hop.pubKey)
3✔
698
        }
699

700
        return str
3✔
701
}
702

703
// padWithDummyHops will append n dummy hops to the candidatePath hop set. The
704
// pub key for the dummy hop will be the same as the pub key for the final hop
705
// of the path. That way, the final hop will be able to decrypt the data
706
// encrypted for each dummy hop.
707
func (c *candidatePath) padWithDummyHops(n uint8) {
9✔
708
        for len(c.hops) < int(n) {
20✔
709
                c.hops = append(c.hops, &blindedPathHop{
11✔
710
                        pubKey:  c.finalNodeID,
11✔
711
                        isDummy: true,
11✔
712
                })
11✔
713
        }
11✔
714
}
715

716
// blindedPathHop holds the information we need to know about a hop in a route
717
// in order to use it in the construction of a blinded path.
718
type blindedPathHop struct {
719
        // pubKey is the real pub key of a node on a blinded path.
720
        pubKey route.Vertex
721

722
        // channelID is the channel along which the previous hop should forward
723
        // their HTLC in order to reach this hop.
724
        channelID uint64
725

726
        // isDummy is true if this hop is an appended dummy hop.
727
        isDummy bool
728
}
729

730
// extractCandidatePath extracts the data it needs from the given route.Route in
731
// order to construct a candidatePath.
732
func extractCandidatePath(path *route.Route) *candidatePath {
9✔
733
        var (
9✔
734
                hops      = make([]*blindedPathHop, len(path.Hops))
9✔
735
                finalNode = path.SourcePubKey
9✔
736
        )
9✔
737
        for i, hop := range path.Hops {
22✔
738
                hops[i] = &blindedPathHop{
13✔
739
                        pubKey:    hop.PubKeyBytes,
13✔
740
                        channelID: hop.ChannelID,
13✔
741
                }
13✔
742

13✔
743
                if i == len(path.Hops)-1 {
21✔
744
                        finalNode = hop.PubKeyBytes
8✔
745
                }
8✔
746
        }
747

748
        return &candidatePath{
9✔
749
                introNode:   path.SourcePubKey,
9✔
750
                finalNodeID: finalNode,
9✔
751
                hops:        hops,
9✔
752
        }
9✔
753
}
754

755
// BlindedHopPolicy holds the set of relay policy values to use for a channel
756
// in a blinded path.
757
type BlindedHopPolicy struct {
758
        CLTVExpiryDelta uint16
759
        FeeRate         uint32
760
        BaseFee         lnwire.MilliSatoshi
761
        MinHTLCMsat     lnwire.MilliSatoshi
762
        MaxHTLCMsat     lnwire.MilliSatoshi
763
}
764

765
// AddPolicyBuffer constructs the bufferedChanPolicies for a path hop by taking
766
// its actual policy values and multiplying them by the given multipliers.
767
// The base fee, fee rate and minimum HTLC msat values are adjusted via the
768
// incMultiplier while the maximum HTLC msat value is adjusted via the
769
// decMultiplier. If adjustments of the HTLC values no longer make sense
770
// then the original HTLC value is used.
771
func AddPolicyBuffer(policy *BlindedHopPolicy, incMultiplier,
772
        decMultiplier float64) (*BlindedHopPolicy, error) {
11✔
773

11✔
774
        if incMultiplier < 1 {
12✔
775
                return nil, fmt.Errorf("blinded path policy increase " +
1✔
776
                        "multiplier must be greater than or equal to 1")
1✔
777
        }
1✔
778

779
        if decMultiplier < 0 || decMultiplier > 1 {
12✔
780
                return nil, fmt.Errorf("blinded path policy decrease " +
2✔
781
                        "multiplier must be in the range [0;1]")
2✔
782
        }
2✔
783

784
        var (
8✔
785
                minHTLCMsat = lnwire.MilliSatoshi(
8✔
786
                        float64(policy.MinHTLCMsat) * incMultiplier,
8✔
787
                )
8✔
788
                maxHTLCMsat = lnwire.MilliSatoshi(
8✔
789
                        float64(policy.MaxHTLCMsat) * decMultiplier,
8✔
790
                )
8✔
791
        )
8✔
792

8✔
793
        // Make sure the new minimum is not more than the original maximum.
8✔
794
        // If it is, then just stick to the original minimum.
8✔
795
        if minHTLCMsat > policy.MaxHTLCMsat {
9✔
796
                minHTLCMsat = policy.MinHTLCMsat
1✔
797
        }
1✔
798

799
        // Make sure the new maximum is not less than the original minimum.
800
        // If it is, then just stick to the original maximum.
801
        if maxHTLCMsat < policy.MinHTLCMsat {
9✔
802
                maxHTLCMsat = policy.MaxHTLCMsat
1✔
803
        }
1✔
804

805
        // Also ensure that the new htlc bounds make sense. If the new minimum
806
        // is greater than the new maximum, then just let both to their original
807
        // values.
808
        if minHTLCMsat > maxHTLCMsat {
9✔
809
                minHTLCMsat = policy.MinHTLCMsat
1✔
810
                maxHTLCMsat = policy.MaxHTLCMsat
1✔
811
        }
1✔
812

813
        return &BlindedHopPolicy{
8✔
814
                CLTVExpiryDelta: uint16(
8✔
815
                        float64(policy.CLTVExpiryDelta) * incMultiplier,
8✔
816
                ),
8✔
817
                FeeRate: uint32(
8✔
818
                        float64(policy.FeeRate) * incMultiplier,
8✔
819
                ),
8✔
820
                BaseFee: lnwire.MilliSatoshi(
8✔
821
                        float64(policy.BaseFee) * incMultiplier,
8✔
822
                ),
8✔
823
                MinHTLCMsat: minHTLCMsat,
8✔
824
                MaxHTLCMsat: maxHTLCMsat,
8✔
825
        }, nil
8✔
826
}
827

828
// calcBlindedPathPolicies computes the accumulated policy values for the path.
829
// These values include the total base fee, the total proportional fee and the
830
// total CLTV delta. This function assumes that all the passed relay infos have
831
// already been adjusted with a buffer to account for easy probing attacks.
832
func calcBlindedPathPolicies(relayInfo []*record.PaymentRelayInfo,
833
        ourMinFinalCLTVDelta uint16) (lnwire.MilliSatoshi, uint32, uint16) {
8✔
834

8✔
835
        var (
8✔
836
                totalFeeBase lnwire.MilliSatoshi
8✔
837
                totalFeeProp uint32
8✔
838
                totalCLTV    = ourMinFinalCLTVDelta
8✔
839
        )
8✔
840
        // Use the algorithms defined in BOLT 4 to calculate the accumulated
8✔
841
        // relay fees for the route:
8✔
842
        //nolint:ll
8✔
843
        // https://github.com/lightning/bolts/blob/db278ab9b2baa0b30cfe79fb3de39280595938d3/04-onion-routing.md?plain=1#L255
8✔
844
        for i := len(relayInfo) - 1; i >= 0; i-- {
23✔
845
                info := relayInfo[i]
15✔
846

15✔
847
                totalFeeBase = calcNextTotalBaseFee(
15✔
848
                        totalFeeBase, info.BaseFee, info.FeeRate,
15✔
849
                )
15✔
850

15✔
851
                totalFeeProp = calcNextTotalFeeRate(totalFeeProp, info.FeeRate)
15✔
852

15✔
853
                totalCLTV += info.CltvExpiryDelta
15✔
854
        }
15✔
855

856
        return totalFeeBase, totalFeeProp, totalCLTV
8✔
857
}
858

859
// calcNextTotalBaseFee takes the current total accumulated base fee of a
860
// blinded path at hop `n` along with the fee rate and base fee of the hop at
861
// `n+1` and uses these to calculate the accumulated base fee at hop `n+1`.
862
func calcNextTotalBaseFee(currentTotal, hopBaseFee lnwire.MilliSatoshi,
863
        hopFeeRate uint32) lnwire.MilliSatoshi {
15✔
864

15✔
865
        numerator := (uint32(hopBaseFee) * oneMillion) +
15✔
866
                (uint32(currentTotal) * (oneMillion + hopFeeRate)) +
15✔
867
                oneMillion - 1
15✔
868

15✔
869
        return lnwire.MilliSatoshi(numerator / oneMillion)
15✔
870
}
15✔
871

872
// calculateNextTotalFeeRate takes the current total accumulated fee rate of a
873
// blinded path at hop `n` along with the fee rate of the hop at `n+1` and uses
874
// these to calculate the accumulated fee rate at hop `n+1`.
875
func calcNextTotalFeeRate(currentTotal, hopFeeRate uint32) uint32 {
15✔
876
        numerator := (currentTotal+hopFeeRate)*oneMillion +
15✔
877
                currentTotal*hopFeeRate + oneMillion - 1
15✔
878

15✔
879
        return numerator / oneMillion
15✔
880
}
15✔
881

882
// hopData packages the record.BlindedRouteData for a hop on a blinded path with
883
// the real node ID of that hop.
884
type hopData struct {
885
        data   *record.BlindedRouteData
886
        nodeID *btcec.PublicKey
887
}
888

889
// padStats can be used to keep track of various pieces of data that we collect
890
// during a call to padHopInfo. This is useful for logging and for test
891
// assertions.
892
type padStats struct {
893
        minPayloadSize  int
894
        maxPayloadSize  int
895
        finalPaddedSize int
896
        numIterations   int
897
}
898

899
// padHopInfo iterates over a set of record.BlindedRouteData and adds padding
900
// where needed until the resulting encrypted data blobs are all the same size.
901
// This may take a few iterations due to the fact that a TLV field is used to
902
// add this padding. For example, if we want to add a 1 byte padding to a
903
// record.BlindedRouteData when it does not yet have any padding, then adding
904
// a 1 byte padding will actually add 3 bytes due to the bytes required when
905
// adding the initial type and length bytes. However, on the next iteration if
906
// we again add just 1 byte, then only a single byte will be added. The same
907
// iteration is required for padding values on the BigSize encoding bucket
908
// edges. The number of iterations that this function takes is also returned for
909
// testing purposes. If prePad is true, then zero byte padding is added to each
910
// payload that does not yet have padding. This will save some iterations for
911
// the majority of cases. minSize can be used to specify a minimum size that all
912
// payloads should be.
913
func padHopInfo(hopInfo []*hopData, prePad bool, minSize int) (
914
        []*sphinx.HopInfo, *padStats, error) {
114✔
915

114✔
916
        var (
114✔
917
                paymentPath = make([]*sphinx.HopInfo, len(hopInfo))
114✔
918
                stats       = padStats{finalPaddedSize: minSize}
114✔
919
        )
114✔
920

114✔
921
        // Pre-pad each payload with zero byte padding (if it does not yet have
114✔
922
        // padding) to save a couple of iterations in the majority of cases.
114✔
923
        if prePad {
222✔
924
                for _, info := range hopInfo {
2,492✔
925
                        if info.data.Padding.IsSome() {
2,384✔
926
                                continue
×
927
                        }
928

929
                        info.data.PadBy(0)
2,384✔
930
                }
931
        }
932

933
        for {
240✔
934
                stats.numIterations++
126✔
935

126✔
936
                // On each iteration of the loop, we first determine the
126✔
937
                // current largest encoded data blob size. This will be the
126✔
938
                // size we aim to get the others to match.
126✔
939
                var (
126✔
940
                        maxLen = minSize
126✔
941
                        minLen = math.MaxInt8
126✔
942
                )
126✔
943
                for i, hop := range hopInfo {
2,550✔
944
                        plainText, err := record.EncodeBlindedRouteData(
2,424✔
945
                                hop.data,
2,424✔
946
                        )
2,424✔
947
                        if err != nil {
2,424✔
948
                                return nil, nil, err
×
949
                        }
×
950

951
                        if len(plainText) > maxLen {
2,545✔
952
                                maxLen = len(plainText)
121✔
953

121✔
954
                                // Update the stats to take note of this new
121✔
955
                                // max since this may be the final max that all
121✔
956
                                // payloads will be padded to.
121✔
957
                                stats.finalPaddedSize = maxLen
121✔
958
                        }
121✔
959
                        if len(plainText) < minLen {
2,549✔
960
                                minLen = len(plainText)
125✔
961
                        }
125✔
962

963
                        paymentPath[i] = &sphinx.HopInfo{
2,424✔
964
                                NodePub:   hop.nodeID,
2,424✔
965
                                PlainText: plainText,
2,424✔
966
                        }
2,424✔
967
                }
968

969
                // If this is our first iteration, then we take note of the min
970
                // and max lengths of the payloads pre-padding for logging
971
                // later.
972
                if stats.numIterations == 1 {
240✔
973
                        stats.minPayloadSize = minLen
114✔
974
                        stats.maxPayloadSize = maxLen
114✔
975
                }
114✔
976

977
                // Now we iterate over them again and determine which ones we
978
                // need to add padding to.
979
                var numEqual int
126✔
980
                for i, hop := range hopInfo {
2,550✔
981
                        plainText := paymentPath[i].PlainText
2,424✔
982

2,424✔
983
                        // If the plaintext length is equal to the desired
2,424✔
984
                        // length, then we can continue. We use numEqual to
2,424✔
985
                        // keep track of how many have the same length.
2,424✔
986
                        if len(plainText) == maxLen {
4,830✔
987
                                numEqual++
2,406✔
988

2,406✔
989
                                continue
2,406✔
990
                        }
991

992
                        // If we previously added padding to this hop, we keep
993
                        // the length of that initial padding too.
994
                        var existingPadding int
21✔
995
                        hop.data.Padding.WhenSome(
21✔
996
                                func(p tlv.RecordT[tlv.TlvType1, []byte]) {
39✔
997
                                        existingPadding = len(p.Val)
18✔
998
                                },
18✔
999
                        )
1000

1001
                        // Add some padding bytes to the hop.
1002
                        hop.data.PadBy(
21✔
1003
                                existingPadding + maxLen - len(plainText),
21✔
1004
                        )
21✔
1005
                }
1006

1007
                // If all the payloads have the same length, we can exit the
1008
                // loop.
1009
                if numEqual == len(hopInfo) {
240✔
1010
                        break
114✔
1011
                }
1012
        }
1013

1014
        log.Debugf("Finished padding %d blinded path payloads to %d bytes "+
114✔
1015
                "each where the pre-padded min and max sizes were %d and %d "+
114✔
1016
                "bytes respectively", len(hopInfo), stats.finalPaddedSize,
114✔
1017
                stats.minPayloadSize, stats.maxPayloadSize)
114✔
1018

114✔
1019
        return paymentPath, &stats, nil
114✔
1020
}
STATUS · Troubleshooting · Open an Issue · Sales · Support · CAREERS · ENTERPRISE · START FREE · SCHEDULE DEMO
ANNOUNCEMENTS · TWITTER · TOS & SLA · Supported CI Services · What's a CI service? · Automated Testing

© 2025 Coveralls, Inc